Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 38, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517563

RESUMO

Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (G. hirsutum L.). Results showed that 159 kinesin genes, including 15 genes of the kinesin-13 gene subfamily, were identified in upland cotton; of which 157 kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 kinesin genes in upland cotton, including 10 kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 kinesin genes were significantly associated with three fiber traits, among which a kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.


Assuntos
Gossypium , Cinesinas , Gossypium/genética , Cinesinas/genética , Fibra de Algodão , Locos de Características Quantitativas/genética , Fenótipo , Celulose
2.
Mol Genet Genomics ; 299(1): 2, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200363

RESUMO

Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of Kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of Kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key Kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (Gossypium hirsutum L.). Results showed that 159 Kinesin genes, including 15 genes of the Kinesin-13 gene subfamily, were identified in upland cotton; of which 157 Kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 Kinesin genes in upland cotton, including 10 Kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven Kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 Kinesin genes were significantly associated with three fiber traits, among which a Kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one Kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the Kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited Kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.


Assuntos
Gossypium , Cinesinas , Gossypium/genética , Cinesinas/genética , Locos de Características Quantitativas/genética , Fibra de Algodão , Celulose
3.
J Pineal Res ; 76(3): e12954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618998

RESUMO

Osteoporosis (OP) is a severe global health issue that has significant implications for productivity and human lifespan. Gut microbiota dysbiosis has been demonstrated to be closely associated with OP progression. Melatonin (MLT) is an important endogenous hormone that modulates bone metabolism, maintains bone homeostasis, and improves OP progression. Multiple studies indicated that MLT participates in the regulation of intestinal microbiota and gut barrier function. However, the promising effects of gut microbiota-derived MLT in OP remain unclear. Here, we found that OP resulted in intestinal tryptophan disorder and decreased the production of gut microbiota-derived MLT, while administration with MLT could mitigate OP-related clinical symptoms and reverse gut microbiota dysbiosis, including the diversity of intestinal microbiota, the relative abundance of many probiotics such as Allobaculum and Parasutterella, and metabolic function of intestinal flora such as amino acid metabolism, nucleotide metabolism, and energy metabolism. Notably, MLT significantly increased the production of short-chain fatty acids and decreased trimethylamine N-oxide-related metabolites. Importantly, MLT could modulate the dynamic balance of M1/M2 macrophages, reduce the serum levels of pro-inflammatory cytokines, and restore gut-barrier function. Taken together, our results highlighted the important roles of gut microbially derived MLT in OP progression via the "gut-bone" axis associated with SCFA metabolism, which may provide novel insight into the development of MLT as a promising drug for treating OP.


Assuntos
Melatonina , Humanos , Melatonina/farmacologia , Triptofano , Disbiose/tratamento farmacológico , Metilaminas
4.
J Biochem Mol Toxicol ; 38(1): e23537, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700640

RESUMO

Increasing evidence indicated that protein arginine methyltransferase-1 (PRMT1) is an oncogene in multiple malignant tumors, including osteosarcoma (OS). The aim of this study was to investigate the underlying mechanism of PRMT1 in OS. The effects of PRMT1 or BCAT1, branched-chain amino acid transaminase 1 (BCAT1) on OS cell proliferation, invasion, autophagy, and apoptosis in vitro were examined. Moreover, molecular control of PRMT1 on c-Myc or transactivation of BCAT1 on c-Myc was assessed by chromatin immunoprecipitation and quantitative reverse transcription PCR assays. The effects of PRMT1 in vivo were examined with a xenograft tumor model. The results showed that PRMT1 was potently upregulated in OS tissues and cells. Upregulation of PRMT1 markedly increased OS cell proliferation and invasion in vitro and reduced cell apoptosis, whereas PRMT1 silencing showed the opposite effects. Cisplatin, one of the most effective chemotherapeutic drugs, improved cell survival rate by inducing the expression of PRMT1 to downregulate the cisplatin sensitivity. Meanwhile, the cisplatin-induced upregulation of PRMT1 expression caused dramatically autophagy induction and autophagy-mediated apoptosis by inactivating the mTOR signaling pathway, which could be reversed by 3-methyladenine, an autophagy inhibitor, or PRMT1 silencing. PRMT1 could activate c-Myc transcription and increase c-Myc-mediated expression of BCAT1. Furthermore, BCAT1 overexpression counteracted the effects of PRMT1 knockdown on cell proliferation, invasion, and apoptosis. Of note, deficiency of PRMT1 suppressed tumor growth in vivo. PRMT1 facilitated the proliferation and invasion of OS cells, inhibited cell apoptosis, and decreased chemotherapy sensitivity through c-Myc/BCAT1 axis, which may become potential target in treating OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Apoptose , Metiltransferases/metabolismo , Neoplasias Ósseas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/uso terapêutico , Proteínas Repressoras/metabolismo , Transaminases/genética , Transaminases/metabolismo , Transaminases/farmacologia
5.
J Nanobiotechnology ; 22(1): 157, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589904

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis. Gold nanoparticles (GNPs) with outstanding anti-bacterial and anti-inflammatory properties, have been demonstrated to ameliorate excessive bone loss during the progression of osteoporosis (OP) and rheumatoid arthritis (RA). However, the protective effects of GNPs on OA progression are not clear. Here, we observed that GNPs significantly alleviated anterior cruciate ligament transection (ACLT)-induced OA in a gut microbiota-dependent manner. 16S rDNA gene sequencing showed that GNPs changed gut microbial diversity and structure, which manifested as an increase in the abundance of Akkermansia and Lactobacillus. Additionally, GNPs increased levels of SCFAs (such as butyric acid), which could have improved bone destruction by reducing the inflammatory response. Notably, GNPs modulated the dynamic balance of M1/M2 macrophages, and increased the serum levels of anti-inflammatory cytokines such as IL-10. To sum up, our study indicated that GNPs exhibited anti-osteoarthritis effects via modulating the interaction of "microbiota-gut-joint" axis, which might provide promising therapeutic strategies for OA.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Ácidos Graxos Voláteis , Anti-Inflamatórios/farmacologia
6.
Eur Spine J ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809439

RESUMO

OBJECTIVE: This study was designed to investigate the clinical features, treatment modalities, and risk factors influencing neurological recovery in patients who underwent scoliosis correction with delayed postoperative neurological deficit (DPND). METHODS: Three patients with DPND were identified from 2 central databases for descriptive analysis. Furthermore, all DPND cases were retrieved from the PubMed and Embase databases. Neurological function recovery was categorized into complete and incomplete recovery groups based on the American Spinal Injury Association (ASIA) impairment scale. RESULTS: Two patients were classified as type 3, and one was classified as type 2 based on the MRI spinal cord classification. Intraoperative neurophysiological monitoring (IONM) was consistently negative throughout the corrective procedure, and intraoperative wake-up tests were normal. The average time to DPND development was 11.8 h (range, 4-18 h), and all three patients achieved complete recovery of neurological function after undergoing revision surgery. A total of 14 articles involving 31 patients were included in the literature review. The mean time to onset of DPND was found to be 25.2 h, and 85.3% (29/34) of patients experienced DPND within the first 48 h postoperatively, with the most common initial symptoms being decreased muscle strength and sensation (26 patients, 83.9%). Regarding neurological function recovery, 14 patients were able to reach ASIA grade E, while 14 patients were not able to reach ASIA grade E. Univariate analysis revealed that preoperative diagnosis (p = 0.004), operative duration (p = 0.017), intraoperative osteotomy method (p = 0.033), level of neurological deficit (p = 0.037) and deficit source (p = 0.0358) were significantly associated with neurological outcomes. Furthermore, multivariate regression analysis indicated a strong correlation between preoperative diagnosis (p = 0.003, OR, 68.633; 95% CI 4.299-1095.657) and neurological prognosis. CONCLUSION: Our findings indicate that spinal cord ischemic injury was a significant factor for patients experiencing DPND and distraction after corrective surgery may be a predisposing factor for spinal cord ischemia. Additionally, it is important to consider the possibility of DPND when limb numbness and decreased muscle strength occur within 48 h after corrective scoliosis surgery. Moreover, emergency surgical intervention is highly recommended for DPND caused by mechanical compression factors with a promising prognosis for neurological function, emphasizing the importance of taking into account preoperative orthopedic diagnoses when evaluating the potential for neurological recovery.

7.
BMC Genomics ; 24(1): 539, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700248

RESUMO

BACKGROUND: 5-methylcytosine (m5C) modification is widely associated with many biological and pathological processes. However, knowledge of m5C modification in osteoarthritis (OA) remains lacking. Thus, our study aimed to identify common m5C features in OA. RESULTS: In the present study, we identified 1395 differentially methylated genes (DMGs) and 1673 differentially expressed genes (DEGs) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) and RNA-sequencing. A co-expression analysis of DMGs and DEGs showed that the expression of 133 genes was significantly affected by m5C methylation. A protein-protein interaction network of the 133 genes was constructed using the STRING database, and the cytoHubba plug-in of Cytoscape was used to hub genes were screen out 11 hub genes, including MMP14, VTN, COL15A1, COL6A2, SPARC, COL5A1, COL6A3, COL6A1, COL8A2, ADAMTS2 and COL7A1. The Pathway enrichment analysis by the ClueGO and CluePedia plugins in Cytoscape showed that the hub genes were significantly enriched in collagen degradation and extracellular matrix degradation. CONCLUSIONS: Our study indicated that m5C modification might play an important role in OA pathogenesis, and the present study provides worthwhile insight into identifying m5C-related therapeutic targets in OA.


Assuntos
Osteoartrite , RNA , Humanos , 5-Metilcitosina , Bases de Dados Factuais , Sequenciamento de Nucleotídeos em Larga Escala , Osteoartrite/genética , Colágeno Tipo VII
8.
Apoptosis ; 28(3-4): 362-378, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36396777

RESUMO

Osteoarthritis (OA), one of the major diseases afflicting the elderly, is a type of degenerative joint disease related to cartilage and synovium. This study aimed to clarify the role and mechanism of adipose mesenchymal stem cell (ADSC)-derived exosomes (Exos) in OA-induced chondrocyte degradation and synovial hyperplasia, thus improving the quality of life of patients. The rat OA model, chondrocytes, synovial fibroblast models and immunofluorescence were applied to observe the in vivo and in vitro functions of human ADSC (hADSC)-derived Exos in OA and its possible regulatory signaling pathways. Bioinformatics software and luciferase reporter assay were carried out to verify the mechanism of microRNA-376c-3p (miR-376c-3p) in hADSC-derived Exos in OA in vitro. Moreover, Safranine O-Fast Green Cartilage staining, Masson staining, immunohistochemistry and immunofluorescence were conducted to verify the role of miR-376c-3p in hADSC-derived Exos in OA in vivo. hADSC-derived Exos mitigated OA-induced chondrocyte degradation and synovial fibrosis both in vivo and in vitro models by repressing the WNT-beta-catenin signaling pathway. For the mechanism exploration in vitro, miR-376c-3p was raised in hADSC-derived Exos and mediated the fibrosis of synovial fibroblasts in OA, and miR-376c-3p targeted the 3'-untranslated region of WNT3 or WNT9a. Meanwhile, the in vivo experiments also corroborated that the miR-376c-3p in hADSC-derived Exos mitigated OA-induced chondrocyte degradation and synovial fibrosis. MiR-376c-3p in hADSC-derived Exos repressed the WNT-beta-catenin pathway by targeting WNT3 or WNT9a, and then mitigating OA-induced chondrocyte degradation and synovial fibrosis, thereby providing theoretical basis for clinical implementation of treatment.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Humanos , Ratos , Animais , Idoso , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Qualidade de Vida , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , Apoptose , Condrócitos , Via de Sinalização Wnt/genética , Células-Tronco Mesenquimais/metabolismo
9.
Small ; 19(35): e2300199, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154227

RESUMO

Bacterial infections pose a significant threat to global public health; therefore, the development of novel therapeutics is urgently needed. Herein, a controllable antibacterial nanoplatform utilizing cyclodextrin metal-organic frameworks (CD-MOFs) as a template to synthesize ultrafine silver nanoparticles (Ag NPs) in their porous structure is constructed. Subsequently, polydopamine (PDA) is encapsulated on the CD-MOFs' surface via dopamine polymerization to enhance the water stability and enable hyperthermia capacity. The resulting Ag@MOF@PDA generates localized hyperthermia and gradually releases Ag+ to achieve long-term photothermal-chemical bactericidal capability. The release rate of Ag+ can be accelerated by NIR-mediated heating in a controllable manner, quickly reaching the effective concentration and reducing the frequency of medication to avoid potential toxicity. In vitro experiments demonstrate that the combined antibacterial strategy can not only effectively kill both gram-negative and gram-positive bacteria, but also directly eradicate mature biofilms. In vivo results confirm that both bacterial- and biofilm-infected wounds treated with a combination of Ag@MOF@PDA and laser exhibit satisfactory recovery with minimal toxicity, displaying a superior therapeutic effect compared to other groups. Together, the results warrant that the Ag@MOF@PDA realizes synergistic antibacterial capacity and controllable release of Ag+ to combat bacterial and biofilm infections, providing a potential antibiotic-free alternative in the "post-antibiotic era."


Assuntos
Ciclodextrinas , Nanopartículas Metálicas , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Raios Infravermelhos
10.
J Muscle Res Cell Motil ; 44(4): 287-297, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37209232

RESUMO

Paravertebral muscles (PVM) act as one of the major dynamic factors to maintain human upright activities and play a remarkable role in maintaining the balance of the trunk. Adult degenerative scoliosis (ADS) has become one of the important causes of disability in the elderly population owing to the changes in spinal biomechanics, atrophy and degeneration of PVM, and imbalance of the spine. Previously, many studies focused on the physical evaluation of PVM degeneration. However, the molecular biological changes are still not completely known. In this study, we established a rat model of scoliosis and performed the proteomic analysis of the PVM of ADS. The results showed that the degree of atrophy, muscle fat deposition, and fibrosis of the PVM of rats positively correlated with the angle of scoliosis. The proteomic results showed that 177 differentially expressed proteins were present in the ADS group, which included 105 upregulated proteins and 72 downregulated proteins compared with the PVM in individuals without spinal deformities. Through the construction of a protein-protein interaction network, 18 core differentially expressed proteins were obtained, which included fibrinogen beta chain, apolipoprotein E, fibrinogen gamma chain, thrombospondin-1, integrin alpha-6, fibronectin-1, platelet factor 4, coagulation factor XIII A chain, ras-related protein Rap-1b, platelet endothelial cell adhesion molecule 1, complement C1q subcomponent subunit A, cathepsin G, myeloperoxidase, von Willebrand factor, integrin beta-1, integrin alpha-1, leukocyte surface antigen CD47, and complement C1q subcomponent subunit B. Further analysis of the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) and immunofluorescence showed that the neutrophil extracellular traps (NETs) formation signaling pathway plays a major role in the pathogenesis of PVM degeneration in ADS. The results of the present study preliminarily laid the molecular biological foundation of PVM atrophy in ADS, which will provide a new therapeutic target for alleviating PVM atrophy and decreasing the occurrence of scoliosis.


Assuntos
Escoliose , Idoso , Humanos , Adulto , Animais , Ratos , Escoliose/epidemiologia , Escoliose/genética , Escoliose/patologia , Complemento C1q , Proteômica , Vértebras Lombares/patologia , Atrofia Muscular/patologia , Músculos , Fibrinogênio , Integrinas
11.
Int Microbiol ; 26(1): 11-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35925494

RESUMO

The NADPH-regeneration enzymes in Corynebacterium glutamicum were inactivated to construct an NADPH-auxotrophic C. glutamicum strain by gene knockout and gene replacement. The resultant NADPH-auxotrophic C. glutamicum XL-1 ΔZMICg::ISm (i.e., strain Leu-1) grew well in the basic medium only with gluconate as carbon source. Replacement of the native glyceraldehyde 3-phosphate dehydrogenase (NAD-GapDHCg) by NADP-GapDHCa from Clostridium acetobutylicum is an effective strategy for producing L-leucine in NADPH-prototrophic strain XL-1 and NADPH-auxotrophic strain Leu-1, whereas the L-leucine yield did not differ significantly between these strains (14.1 ± 1.8 g/L vs 16.2 ± 1.1 g/L). Enhancing the carbon flux in biosynthetic pathway by recombinant expression plasmid pEC-ABNCE promoted L-leucine production, but the shortage NADPH supply limited the L-leucine yield. The mutated promoters of zwf and icdCg were introduced into C. glutamicum with NADP-GapDHCa and pEC-ABNCE increased L-leucine yield (54.3 ± 2.9 g/L) and improved cell growth (OD562 = 83.4 ± 7.5) in fed-batch fermentation because the resultant strain C. glutamicum XL-1 ΔMICg::ISm GCg::GCa Pzwf-D1 Picd-D2/pEC-ABNCE (i.e., strain Leu-9) exhibited the proper intracellular NADPH and NADH level. This is the first report of constructing an L-leucine high-yielding strain that reasonably supplies NADPH by optimizing the biosynthetic pathway of NADPH from an NADPH-auxotrophic strain.


Assuntos
Clostridium acetobutylicum , Corynebacterium glutamicum , NADP/genética , NADP/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Leucina/genética , Leucina/metabolismo , Clostridium acetobutylicum/metabolismo , Fermentação
12.
Appl Microbiol Biotechnol ; 107(11): 3593-3603, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37097502

RESUMO

L-arginine (L-Arg) is a semi-essential amino acid with many important physiological functions. However, achieving efficient manufacture of L-Arg on an industrial scale using Escherichia coli (E. coli) remains a major challenge. In previous studies, we constructed a strain of E. coli A7, which had good L-Arg production capacity. In this study, E. coli A7 was further modified, and E. coli A21 with more efficient L-Arg production capacity was obtained. Firstly, we reduced the acetate accumulation of strain A7 by weakening the poxB gene and overexpressing acs gene. Secondly, we improved the L-Arg transport efficiency of strains by overexpressing the lysE gene from Corynebacterium glutamicum (C. glutamicum). Finally, we enhanced the supplies of precursors for the synthesis of L-Arg and optimized the supplies of cofactor NADPH and energy ATP in strain. After fermentation in a 5-L bioreactor, the L-Arg titer of strain A21 was found to be 89.7 g/L. The productivity was 1.495 g/(L·h) and the glucose yield was 0.377 g/g. Our study further narrowed the titer gap between E. coli and C. glutamicum in the synthesis of L-Arg. In all recent studies on the L-Arg production by E. coli, this was the highest titer recorded. In conclusion, our study further promotes the efficient mass synthesis of L-Arg by E. coli. KEY POINTS: • The acetate accumulation of starting strain A7 was decreased. • Overexpression of gene lysE of C. glutamicum enhanced L-Arg transport in strain A10. • Enhance the supplies of precursors for the synthesis of L-Arg and optimize the supplies of cofactor NADPH and energy ATP. Finally, Strain A21 was detected to have an L-Arg titer of 89.7 g/L in a 5-L bioreactor.


Assuntos
Corynebacterium glutamicum , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Arginina/metabolismo , NADP/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Trifosfato de Adenosina/metabolismo , Engenharia Metabólica , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo
13.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675279

RESUMO

α-Farnesene, an acyclic volatile sesquiterpene, plays important roles in aircraft fuel, food flavoring, agriculture, pharmaceutical and chemical industries. Here, by re-creating the NADPH and ATP biosynthetic pathways in Pichia pastoris, we increased the production of α-farnesene. First, the native oxiPPP was recreated by overexpressing its essential enzymes or by inactivating glucose-6-phosphate isomerase (PGI). This revealed that the combined over-expression of ZWF1 and SOL3 increases α-farnesene production by improving NADPH supply, whereas inactivating PGI did not do so because it caused a reduction in cell growth. The next step was to introduce heterologous cPOS5 at various expression levels into P. pastoris. It was discovered that a low intensity expression of cPOS5 aided in the production of α-farnesene. Finally, ATP was increased by the overexpression of APRT and inactivation of GPD1. The resultant strain P. pastoris X33-38 produced 3.09 ± 0.37 g/L of α-farnesene in shake flask fermentation, which was 41.7% higher than that of the parent strain. These findings open a new avenue for the development of an industrial-strength α-farnesene producer by rationally modifying the NADPH and ATP regeneration pathways in P. pastoris.


Assuntos
Pichia , Sesquiterpenos , NADP/metabolismo , Pichia/genética , Pichia/metabolismo , Sesquiterpenos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Engenharia Metabólica
14.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511626

RESUMO

L-tryptophan (L-trp), produced through bio-manufacturing, is widely used in the pharmaceutical and food industries. Based on the previously developed L-trp-producing strain, this study significantly improved the titer and yield of L-trp, through metabolic engineering of the shikimate pathway and the L-tryptophan branch. First, the rate-limiting steps in the shikimate pathway were investigated and deciphered, revealing that the combined overexpression of the genes aroE and aroD increased L-trp production. Then, L-trp synthesis was further enhanced at the shaking flask level by improving the intracellular availability of L-glutamine (L-gln) and L-serine (L-ser). In addition, the transport system and the competing pathway of L-trp were also modified, indicating that elimination of the gene TnaB contributed to the extracellular accumulation of L-trp. Through optimizing formulas, the robustness and production efficiency of engineered strains were enhanced at the level of the 30 L fermenter. After 42 h of fed-batch fermentation, the resultant strain produced 53.65 g/L of L-trp, with a yield of 0.238 g/g glucose. In this study, the high-efficiency L-trp-producing strains were created in order to establish a basis for further development of more strains for the production of other highly valuable aromatic compounds or their derivatives.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Triptofano/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica , Fermentação
15.
World J Microbiol Biotechnol ; 40(1): 17, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981595

RESUMO

Microorganisms play an important role in regulating flavor compounds in rice wine, whereas we often don't understand how did they affect flavor compounds. Here, the relations between flavor compounds and microbial community ecological succession were investigated by monitoring flavor compounds and microbial community throughout the fermentation stage of rice wine. The composition of microbial community showed a dynamic change, but 13 dominant bacterial genera and 4 dominant fungal genera were detected throughout the fermentation stages. Saccharomyces presented a strong negative correlation with fungi genera but had positive associations with bacteria genera. Similarly, flavor compounds in rice wine were also showed the dynamic change, and 112 volatile compounds and 17 free amino acids were identified in the whole stages. The alcohol-ester ratio was decreased in the LTF stage, indicating that low temperature boosts ester formation. The potential correlation between flavor compounds and microbial community indicated that Delftia, Chryseobacterium, Rhizopus and Wickerhamomyces were the core functional microorganisms in rice wine. These findings clarified the correlation between changes in flavor compounds and in microbial community in the liquid fermentation of rice wine, and these results have some reference value for the quality improvement and technological optimization in liquid fermentation of rice wine.


Assuntos
Microbiota , Vinho , Fermentação , Suplementos Nutricionais , Ésteres
16.
Curr Psychol ; 42(8): 6315-6327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34149265

RESUMO

Informed by expectation-value theory and related literature, the goal of the current investigation was to identify profiles of students drawn from three purposes of homework (academic, self-regulatory, and approval-seeking). Participants were 750 eleventh-grade students in China. Results from latent profile analysis (LPA) revealed identified four different profiles of students: Very Low Profile (very low in all purposes; 5.73%), Low Profile (low in all purposes; 30.40%), Moderate Profile (moderate in all purposes; 54.40%), and High Profile (high in all purposes; 9.47%). Results further revealed that student gender was associated with profile membership. Finally, profile membership was significantly related to homework effort and completion (with a medium effect size) in that, in general, the higher the homework purposes, the higher the homework effort and homework completion.

17.
Clin Immunol ; 238: 108995, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378300

RESUMO

This study explored the function of circular RNA VMA21 (circVMA21) in osteoarthritis (OA). IL-1ß inducement reduced the expression of circVMA21 in C28/I2 cells and human primary chondrocytes. Forced expression of circVMA21 heightened cell viability and attenuated cell apoptosis, accompanied by upregulation of Bcl-2, and downregulation of Bax and C-caspase-3 in C28/I2 cells in response to IL-1ß exposure. CircVMA21 overexpression diminished the expression of MMP1 and MMP13, augmented the expression of COL2A1, and impeded the production of IL-6, TNF-α, prostaglandin E2 (PGE2) and NO. CircVMA21 served as a competitive endogenous RNA by sponging miR-495-3p. F-box and WD40 domain protein 7 (FBWX7) was identified as a target of miR-495-3p. The compensation experiments affirmed that circVMA21-mediated protective effects on IL-1ß-irritated chondrocytes through the miR-495-3p/FBWX7 axis. The role of circVMA21 was also confirmed in an OA rat model. Collectively, these findings revealed a protective effect of circVMA21in OA by intercepting the miR-495-3p/FBWX7 crosstalk.


Assuntos
Condrócitos , MicroRNAs , Osteoartrite , RNA Circular , Animais , Apoptose/genética , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Proteínas F-Box , Humanos , Interleucina-1beta/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , RNA Circular/genética , Ratos , Transdução de Sinais
18.
FASEB J ; 35(6): e21543, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34046950

RESUMO

Clinically, bone destruction caused by Mycobacterium tuberculosis was serious especially in patients with vitamin D (VD) deficiency. However, the role of VD in M. tuberculosis-induced bone destruction remains clear. In this context, we investigate the role of VD and vitamin D receptor (VDR) in the M. tuberculosis-induced bone destruction. First, we infected RAW264.7 and bone marrow-derived macrophages (BMMs) with Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) in vitro. Then, we activated VDR through VD administration. TRAP and FAK staining, bone resorption assays, immunofluorescence staining, qPCR, and western blot were carried out. In vivo, the M. tuberculosis-induced osteolytic model on the murine skull was established and the µCT and histological analyses were performed. We found that VDR and TRAP were upregulated in bone tuberculosis tissue and proved that M. tuberculosis infection promoted osteoclastogenesis in RAW264.7 and BMMs. VD could inhibit osteoclasts differentiation, fusion, and bone resorption dose-dependently. However, when VDR was knocked down, the inhibitory effect of VD on osteoclasts disappeared. In mechanism, activation of VDR inhibits the phosphorylation of IκB α, thereby inhibiting NFκB signaling pathway and alleviating osteoclastogenesis. Furthermore, in the skull osteolysis model, VD administration reduced osteolysis, but not in VDR-/- mice. Our study, for the first time, demonstrates that activation of VDR by VD administration inhibits M. tuberculosis-induced bone destruction. Our results reveal that VD and VDR are potential therapeutic targets for M. tuberculosis-induced bone destruction, and are of great clinical significance for the development of new therapeutic strategies.


Assuntos
Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , NF-kappa B/antagonistas & inibidores , Osteólise/prevenção & controle , Receptores de Calcitriol/metabolismo , Tuberculose/complicações , Vitamina D/administração & dosagem , Animais , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Osteólise/etiologia , Osteólise/metabolismo , Osteólise/patologia , Receptores de Calcitriol/genética , Tuberculose/microbiologia , Vitaminas/administração & dosagem
19.
Environ Sci Technol ; 56(20): 14296-14305, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36198091

RESUMO

The Tibet Autonomous Region in China is a unique place with high altitude and special Tibetan culture. The residents have different living habits and domestic fuels from those in other parts of China, however, knowledge on the emission characteristics of local residential fuels remain poorly understood until now. In this study, nine popular residential fuels in the Tibet are burned in situ to study the aerosol chemical compositions, mass spectral signatures, and emission characteristics from their burning emissions. Overall, emissions of particulate and gaseous pollutants depend strongly on the burning conditions, in addition to the fuel constituents themselves. Burning the biofuels of yak dung, WeiSang mixture fuels, and two powdery Tibetan incenses with relatively low combustion efficiencies can emit large amounts of CO and aerosols, especially organic aerosols (>90%) with large diameters. In contrast, burning of wood, coal, ghee lamp, stick-like Tibetan incense, and diesel can release abundant CO2 but fewer aerosols from their flaming combustion. A comprehensive database consisting of the high-resolution mass spectra of organics and emission factors of multiple chemical components are established. Distinctly different mass spectral signatures are found among the different fuels, in particularly those unique Tibetan biofuels. All these findings have significant implications for the identification of aerosol sources, compilation of pollutant emission inventories, and assessment of potential environment effects in this remote region.


Assuntos
Poluentes Atmosféricos , Ghee , Aerossóis/análise , Poluentes Atmosféricos/análise , Biocombustíveis , Dióxido de Carbono , Carvão Mineral , Monitoramento Ambiental , Material Particulado/análise , Tibet
20.
Environ Res ; 212(Pt A): 113179, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35367426

RESUMO

Lanzhou, which is a valley city on the Loess Plateau, frequently suffered from aerosol pollution in recent years, especially in winter. However, the lack of understanding of factors governing aerosol pollution limits the implementation of effective emission policies in and around Lanzhou. To help solve this problem, an intensive field campaign was conducted at the SACOL site, which is a suburban site near Lanzhou, in winter 2018. The chemical characteristics and sources of submicron particulate matter (PM1) were investigated, and the influence of the topography around Lanzhou on aerosol pollution was examined. In the present study, the average PM1 mass concentration reached 25.6 ± 12.8 µg m-3, with 41.0% organics, 16.1% sulfate, 19.7% nitrate, 10.7% ammonium, 3.1% chloride, and 9.4% black carbon (BC). Three organic aerosol (OA) factors were identified with the positive matrix factorization (PMF) algorithm, including a biomass burning OA (BBOA, 13.6%), a coal combustion OA (CCOA, 34.2%), and an oxygenated OA (OOA, 52.2%). The significant relationships between organics, BC, and chloride and wind pattern suggested that the SACOL site was strongly influenced by regionally transported aerosols. Further analysis suggested that these aerosol regional transport events were caused by topography. Due to the limitation of the valley, aerosols accumulated in the valley. These accumulated aerosols were then transported to the SACOL site along the valley by prevailing winds. Our study highlights enhanced aerosol regional transport in valleys, which provides a new perspective for future studies on aerosol pollution in basins and valleys.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Cloretos/análise , Monitoramento Ambiental , Material Particulado/análise , Fuligem/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa