Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695188

RESUMO

Tomatoes are frequently challenged by various pathogens, among which Phytophthora capsici (P. capsici) is a destructive soil-borne pathogen that seriously threatens the safe production of tomatoes. Plant growth-promoting rhizobacteria (PGPR) positively induced plant resistance against multiple pathogens. However, little is known about the role and regulatory mechanism of PGPR in tomato resistance to P. capsici. Here, we identified a new strain Serratia plymuthica (S. plymuthica), HK9-3, which has a significant antibacterial effect on P. capsici infection. Meanwhile, stable colonization in roots by HK9-3, even under P. capsici infection, improved tomato growth parameters, root system architecture, photosynthetic capacity, and boosted biomass. Importantly, HK9-3 colonization significantly alleviated the damage caused by P. capsici infection through enhancing ROS scavenger ability and inducing antioxidant defense system and pathogenesis-related (PR) proteins in leaves, as evidenced by elevating the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and chitinase, ß-1,3-glucanase, and increasing the transcripts of POD, SOD, CAT, APX1, PAL1, PAL2, PAL5, PPO2, CHI17 and ß-1,3-glucanase genes. Notably, HK9-3 colonization not only effectively improved soil microecology and soil fertility, but also significantly enhanced fruit yield by 44.6% and improved quality. Our study presents HK9-3 as a promising and effective solution for controlling P. capsici infection in tomato cultivation while simultaneously promoting plant growth and increasing yield, which may have implications for P. capsici control in vegetable production.


Assuntos
Resistência à Doença , Phytophthora , Doenças das Plantas , Rizosfera , Serratia , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/genética , Phytophthora/fisiologia , Serratia/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Antioxidantes/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
2.
Biochem Biophys Res Commun ; 675: 41-45, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451216

RESUMO

ω-transaminase has attracted growing attention for chiral amine synthesis, although it commonly suffers from severe by-product inhibition. ω-transaminase CrmG is critical for the biosynthesis of Caerulomycin A, a natural product that possesses broad bioactivity, including immunosuppressive and anti-cancer. Compared to L-Arg, amino donor L-Glu, L-Gln or L-Ala is more preferred by CrmG. In this study, we determined the crystal structure of CrmG in complex with amino donor L-Arg, unveiling the detailed binding mode. Specifically, L-Arg exhibits an extensive contact with aromatic residues F207 and W223 on the roof of CrmG active site via cation-π network. This interaction may render the deamination by-product of L-Arg to be an inhibitor against PMP-bound CrmG by stabilizing its flexible roof, thus reducing the reactivity of L-Arg as an amino donor for CrmG. These data provide further evidence to support our previous proposal that CrmG can overcome inhibition from those by-products that are not able to stabilize the flexible roof of active site in PMP-bound CrmG. Thus, our result can not only facilitate the biosynthesis of CRM A but also be beneficial for the rational design of ω-transaminase to bypass by-product inhibition.


Assuntos
Arginina , Transaminases , Transaminases/metabolismo , Domínio Catalítico
3.
Ann Surg Oncol ; 30(3): 1597-1613, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36380254

RESUMO

PURPOSE: This study aimed to summarize the efficacy and safety of neoadjuvant chemoimmunotherapy in resectable esophageal squamous cell carcinoma (ESCC). METHODS: Literature focusing on the efficacy and safety of neoadjuvant immunotherapy or chemoimmunotherapy in resectable ESCC published before June 2022 was retrieved from PubMed, Embase, Cochrane Library, and Web of Science. The risk of bias was assessed using the Cochrane risk-of-bias assessment tool. Subgroup and sensitivity analyses were further performed. RESULTS: A total of 452 patients from 15 studies were included in this meta-analysis. All of the studies explored the efficacy and safety of neoadjuvant chemoimmunotherapy. The pooled major pathological response (MPR) rate and pathological complete response (PCR) rate were 58.3% and 32.9%, respectively. The pooled incidence of treatment-related adverse events (TRAEs) and serious adverse events (SAEs) were 91.6% and 19.4%, respectively. The pooled R0 resection rate was 92.8%, and the resection rate was 81.1%. Incidence of anastomotic leakage, pulmonary infection, and postoperative hoarseness were 10.7%, 21.3%, and 13.0%, respectively. Compared with 2 cycles of neoadjuvant therapy, patients who received > 2 cycles of neoadjuvant therapy showed higher MPR rate (57.3% vs. 61.1%) and PCR rate (30.6% vs. 37.9%), and the incidence of TRAEs (89.2% vs. 98.9%) tended to be higher. However, no significant difference was found (P > 0.05). Two cycles of neoadjuvant therapy showed higher R0 resection rate and resection rate (R0 resection rate: 96.0% vs. 87.8%, P = 0.02; resection rate: 85.6% vs. 74.7%, P = 0.01). Pembrolizumab- and tislelizumab-based neoadjuvant therapy showed higher MPR rate (72.4% and 72.2%) and PCR rate (41.5 % and 50.0%). Compared with other ICIs, tislelizumab-based neoadjuvant therapy showed lower R0 resection rate (80.5%). The pooled incidence of SAEs for pembrolizumab-based neoadjuvant therapy (2.0%) was lower. Camrelizumab-based neoadjuvant therapy showed lower incidence of pulmonary infection (11.5%). CONCLUSIONS: Neoadjuvant chemoimmunotherapy is effective and safe for resectable ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/patologia , Terapia Neoadjuvante , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Quimioterapia Adjuvante , Imunoterapia
4.
Appl Environ Microbiol ; 88(23): e0155822, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36383003

RESUMO

Phytoplankton is the major source of labile organic matter in the sunlit ocean, and they are therefore key players in most biogeochemical cycles. However, studies examining the heterotrophic bacterial cycling of specific phytoplankton-derived nitrogen (N)- and sulfur (S)-containing organic compounds are currently lacking at the molecular level. Therefore, the present study investigated how the addition of N-containing (glycine betaine [GBT]) and S-containing (dimethylsulfoniopropionate [DMSP]) organic compounds, as well as glucose, influenced the microbial production of new organic molecules and the microbial community composition. The chemical composition of microbial-produced dissolved organic matter (DOM) was analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) demonstrating that CHO-, CHON-, and CHOS-containing molecules were enriched in the glucose, GBT, and DMSP experiments, respectively. High-throughput sequencing showed that Alteromonadales was the dominant group in the glucose, while Rhodobacterales was the most abundant group in both the GBT and DMSP experiments. Cooccurrence network analysis furthermore indicated more complex linkages between the microbial community and organic molecules in the GBT compared with the other two experiments. Our results shed light on how different microbial communities respond to distinct organic compounds and mediate the cycling of ecologically relevant compounds. IMPORTANCE Nitrogen (N)- and sulfur (S)-containing compounds are normally considered part of the labile organic matter pool that fuels heterotrophic bacterial activity in the ocean. Both glycine betaine (GBT) and dimethylsulfoniopropionate (DMSP) are representative N- and S-containing organic compounds, respectively, that are important phytoplankton cellular compounds. The present study therefore examined how the microbial community and the organic matter they produce are influenced by the addition of carbohydrate-containing (glucose), N-containing (GBT), and S-containing (DMSP) organic compounds. The results demonstrate that when these carbon-, N-, and S-rich compounds are added separately, the organic molecules produced by the bacteria growing on them are enriched in the same elements. Similarly, the microbial community composition was also distinct when different compounds were added as the substrate. Overall, this study demonstrates how the microbial communities metabolize and transform different substrates thereby, expanding our understanding of the complexity of links between microbes and substrates in the ocean.


Assuntos
Microbiota , Nitrogênio , Nitrogênio/metabolismo , Carbono/metabolismo , Matéria Orgânica Dissolvida , Betaína/metabolismo , Enxofre/metabolismo , Fitoplâncton/metabolismo , Bactérias/genética , Bactérias/metabolismo , Compostos Orgânicos/metabolismo , Glucose/metabolismo
5.
Bioorg Chem ; 120: 105639, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093691

RESUMO

Dengue virus, belonging to a genus Flavivirus, caused public health problem in recent years. One controversial vaccine of DENV was approved and there is no antiviral for the clinic treatment of DENV, therefore, efficient antivirals to DENV are of great medical significance. In this study, we conducted the design, synthesis, cell-based and target-based activity evaluation of 28 compounds based on indoline structural skeleton against DENV infection. Among them, 13 active compounds against DENV infection were discovered and their structure-activity relationship (SAR) was summarized. In this study, indoline carbohydrazine has derived more active compounds than indoline carboamide. It is discovered that TBS group exhibits a good pharmacophore to enhance anti-DENV activity. Further exploration indicated that post-treatment acts as effective time of addition and compound 15 targeting the post-entry stages of DENV2 viral life cycle. SPR imaging results support there are strong interaction of 13 and 15 with RdRp and compounds 13 and 15 reduce RdRp enzymatic activity, revealing that RdRp of DENV NS5 is the drug target for these series of compounds. Molecular docking deciphered the relationship of the structural feature with the putative binding mode by 13 and 15 with RdRp domain of DENV2 NS5 by hydrogen bonds and hydrophobic interactions to establish the fitted low energy conformation. Future studies will focus on designing more potent inhibitors for the treatment and prevention of dengue virus replication and infection, and understanding the more profound underlying structural features of inhibitors and drug action of the mechanism.


Assuntos
Vírus da Dengue , Antivirais/química , Indóis , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA , Relação Estrutura-Atividade
6.
Hepatology ; 69(2): 803-816, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30063812

RESUMO

Vascular malformations present diagnostic and treatment challenges. In particular, malformations of vessels to the viscera are often diagnosed late or incorrectly due to the insidious onset and deep location of the disease. Therefore, a better knowledge of the genetic mutations underlying such diseases is needed. Here, we evaluated a four-generation family carrying vascular malformations of major vessels that affect multiple organs, which we named "multiorgan venous and lymphatic defect" (MOVLD) syndrome. Genetic analyses identified an association between a mutation in DEAD-box helicase 24 (DDX24), a gene for which the function is largely unknown, and MOVLD. Next, we screened 161 patients with sporadic vascular malformations of similar phenotype to our MOVLD family and found the same mutation or one of the two additional DDX24 mutations in 26 cases. Structural modeling revealed that two of the mutations are located within the adenosine triphosphate-binding domain of DDX24. Knockdown of DDX24 expression in endothelial cells resulted in elevated migration and tube formation. Transcriptomic analysis linked DDX24 to vascular system-related functions. Conclusion: Our results provide a link between DDX24 and vascular malformation and indicate a crucial role for DDX24 in endothelial cell functions; these findings create an opportunity for genetic diagnosis and therapeutic targeting of malformations of vessels to the viscera.


Assuntos
Quilotórax/genética , RNA Helicases DEAD-box/genética , Malformações Vasculares/genética , Vísceras/irrigação sanguínea , Adulto , Sequência de Aminoácidos , Movimento Celular , Células Endoteliais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Químicos , Mutação , Linhagem , Conformação Proteica
7.
J Biol Chem ; 293(47): 18180-18191, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30275017

RESUMO

Nuclear receptor farnesoid X receptor (FXR) functions as the major bile acid sensor coordinating cholesterol metabolism, lipid homeostasis, and absorption of dietary fats and vitamins. Because of its central role in metabolism, FXR represents an important drug target to manage metabolic and other diseases, such as primary biliary cirrhosis and nonalcoholic steatohepatitis. FXR and nuclear receptor retinoid X receptor α (RXRα) form a heterodimer that controls the expression of numerous downstream genes. To date, the structural basis and functional consequences of the FXR/RXR heterodimer interaction have remained unclear. Herein, we present the crystal structures of the heterodimeric complex formed between the ligand-binding domains of human FXR and RXRα. We show that both FXR and RXR bind to the transcriptional coregulator steroid receptor coactivator 1 with higher affinity when they are part of the heterodimer complex than when they are in their respective monomeric states. Furthermore, structural comparisons of the FXR/RXRα heterodimers and the FXR monomers bound with different ligands indicated that both heterodimerization and ligand binding induce conformational changes in the C terminus of helix 11 in FXR that affect the stability of the coactivator binding surface and the coactivator binding in FXR. In summary, our findings shed light on the allosteric signal transduction in the FXR/RXR heterodimer, which may be utilized for future drug development targeting FXR.


Assuntos
Coativador 1 de Receptor Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Ligantes , Coativador 1 de Receptor Nuclear/química , Coativador 1 de Receptor Nuclear/genética , Ligação Proteica , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/genética , Receptor X Retinoide alfa/genética
8.
Biochem Biophys Res Commun ; 487(2): 339-343, 2017 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28412361

RESUMO

IDO1 (indoleamine 2, 3-dioxygenase 1), a well characterized immunosuppressive enzyme, has attracted growing attention as a potential target for cancer immunotherapy. Hydroxylamidine compounds INCB024360 and INCB14943 (INCB024360 analogue) are highly effective IDO1 inhibitors. INCB024360 is undergoing clinical trials for treatment of various types of human cancer. Here, we determined the co-crystal structure of IDO1 and INCB14943, and elucidate the detailed binding mode. INCB14943 binds to heme iron in IDO1 protein through the oxime nitrogen. Further analysis also reveals that a halogen bonding interaction between the chlorine atom (3-Cl) of INCB14943 and the sulphur atom of C129 significantly improves the inhibition activity against IDO1. Comparing with the other reported inhibitors, the oxime nitrogen and halogen bond interaction are identified as the unique features of INCB14943 among the IDO1 inhibitors. Thus, our study provides novel insights into the interaction between a small molecule inhibitor INCB14943 and IDO1 protein. The structural information will facilitate future IDO1 inhibitor design.


Assuntos
Hidroxilaminas/química , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/ultraestrutura , Oxidiazóis/química , Oximas/química , Sítios de Ligação , Ativação Enzimática , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
9.
Biochem Biophys Res Commun ; 488(2): 259-265, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28433636

RESUMO

Lipases play an important role in physiological metabolism and diseases, and also have multiple industrial applications. Rational modification of lipase specificity may increase the commercial utility of this group of enzymes, but is hindered by insufficient mechanistic understanding. Here, we report the 2.0 Å resolution crystal structure of a mono- and di-acylglycerols lipase from Malassezia globosa (MgMDL2). Interestingly, residues Phe278 and Glu282 were found to involve in substrate recognition because mutation on each residue led to convert MgMDL2 to a triacylglycerol (TAG) lipase. The Phe278Ala and Glu282Ala mutants also acquired ability to synthesize TAGs by esterification of glycerol and fatty acids. By in silicon analysis, steric hindrance of these residues seemed to be key factors for the altered substrate specificity. Our work may shed light on understanding the unique substrate selectivity mechanism of mono- and di-acylglycerols lipases, and provide a new insight for engineering biocatalysts with desired catalytic behaviors for biotechnological application.


Assuntos
Lipase/química , Lipase/metabolismo , Malassezia/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Especificidade por Substrato
10.
Sensors (Basel) ; 16(5)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187393

RESUMO

A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10(-4) pF/µm with 0.08 µm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range.

11.
Int J Mol Sci ; 16(4): 7273-88, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25837472

RESUMO

Thermostability and substrate specificity are important characteristics of enzymes for industrial application, which can be improved by protein engineering. SMG1 lipase from Malassezia globosa is a mono- and diacylglycerol lipase (MDL) that shows activity toward mono- and diacylglycerols, but no activity toward triacylglycerols. SMG1 lipase is considered a potential biocatalyst applied in oil/fat modification and its crystal structure revealed that an interesting residue-Asn277 may contribute to stabilize loop 273-278 and the 3104 helix which are important to enzyme characterization. In this study, to explore its role in affecting the stability and catalytic activity, mutagenesis of N277 with Asp (D), Val (V), Leu (L) and Phe (F) was conducted. Circular dichroism (CD) spectral analysis and half-life measurement showed that the N277D mutant has better thermostability. The melting temperature and half-life of the N277D mutant were 56.6 °C and 187 min, respectively, while that was 54.6 °C and 121 min for SMG1 wild type (WT). Biochemical characterization of SMG1 mutants were carried out to test whether catalytic properties were affected by mutagenesis. N277D had similar enzymatic properties as SMG1 WT, but N277F showed a different substrate selectivity profile as compared to other SMG1 mutants. Analysis of the SMG1 3D model suggested that N277D formed a salt bridge via its negative charged carboxyl group with a positively charged guanidino group of R227, which might contribute to confer N277D higher temperature stability. These findings not only provide some clues to understand the molecular basis of the lipase structure/function relationship but also lay the framework for engineering suitable MDL lipases for industrial applications.


Assuntos
Lipase Lipoproteica/metabolismo , Malassezia/metabolismo , Catálise , Diglicerídeos/genética , Diglicerídeos/metabolismo , Meia-Vida , Cinética , Lipase Lipoproteica/genética , Malassezia/genética , Mutagênese/genética , Engenharia de Proteínas/métodos , Estabilidade Proteica , Especificidade por Substrato , Temperatura , Triglicerídeos/genética , Triglicerídeos/metabolismo
12.
J Biol Chem ; 288(23): 16598-16605, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23615901

RESUMO

Sorting nexins are phox homology (PX) domain-containing proteins involved in diverse intracellular endosomal trafficking pathways. The PX domain binds to certain phosphatidylinositols and is recruited to vesicles rich in these lipids. The structure of the PX domain is highly conserved, containing a three-stranded ß-sheet, followed by three α-helices. Here, we report the crystal structures of truncated human SNX11 (sorting nexin 11). The structures reveal that SNX11 contains a novel PX domain, hereby named the extended PX (PXe) domain, with two additional α-helices at the C terminus. We demonstrate that these α-helices are indispensible for the in vitro functions of SNX11. We propose that this PXe domain is present in SNX10 and is responsible for the vacuolation activity of SNX10. Thus, this novel PXe domain constitutes a structurally and functionally important PX domain subfamily.


Assuntos
Nexinas de Classificação/química , Vacúolos , Humanos , Fosfatidilinositóis , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Relação Estrutura-Atividade
13.
Proteins ; 82(12): 3483-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25212774

RESUMO

Sorting nexin 10 (SNX10), the unique member of the SNX family having vacuolation activity in cells, was shown to be involved in the development of autosomal recessive osteopetrosis (ARO) in recent genetic studies. However, the molecular mechanism of the disease-related mutations affecting the biological function of SNX10 is unclear. Here, we report the crystal structure of human SNX10 to 2.6 Å resolution. The structure reveals that SNX10 contains the extended phox-homology domain we previously proposed. Our study provides the structural details of those disease-related mutations. Combined with the vacuolation study of those mutations, we found that Tyr32 and Arg51 are important for the protein stability and both play a critical role in vacuolation activity, while Arg16Leu may affect the function of SNX10 in osteoclast through protein-protein interactions.


Assuntos
Modelos Moleculares , Mutação , Osteopetrose/congênito , Nexinas de Classificação/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/química , Humanos , Células MCF-7 , Dados de Sequência Molecular , Osteoclastos/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Alinhamento de Sequência , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Tirosina/química , Vacúolos/metabolismo
14.
Int J Surg ; 110(1): 490-506, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800587

RESUMO

BACKGROUND: The application of neoadjuvant immune checkpoint inhibitors combined with chemotherapy (NICT) in treating locally advanced oesophageal squamous cell carcinoma (ESCC) is a subject of considerable research interest. In light of this, we undertook a comprehensive meta-analysis aiming to compare the efficacy and safety of this novel approach with conventional neoadjuvant chemotherapy (NCT) in the management of ESCC. METHODS: A systematic search was conducted in PubMed, Embase, Cochrane Library, and Web of Science to gather relevant literature on the efficacy and safety of NICT compared to conventional NCT in locally advanced ESCC published before June 2023. Effect indicators, including odds ratios (ORs) with associated 95% CIs, were employed to evaluate the safety and efficacy outcomes. The risk of bias was assessed using the Cochrane bias risk assessment tool, and s ubgroup analysis and sensitivity analysis were conducted to investigate the findings further. RESULTS: A total of nine studies qualified for the meta-analysis, all of which investigated the efficacy and safety of NICT compared to conventional NCT. The pooled rates of pathologic complete response and major pathologic response in the NICT group were significantly higher compared to the NCT group, with values of 26.9% versus 8.3% ( P <0.00001) and 48.1% versus 24.6% ( P <0.00001), respectively. The ORs for achieving pathologic complete response and major pathologic response were 4.24 (95% CI, 2.84-6.32, I 2 =14%) and 3.30 (95% CI, 2.31-4.71, I 2 =0%), respectively, indicating a significant advantage for the NICT group. Regarding safety outcomes, the pooled incidences of treatment-related adverse events and serious adverse events in the NICT group were 64.4% and 11.5%, respectively, compared to 73.8% and 9.3% in the NCT group. However, there were no significant differences observed between the two groups in terms of treatment-related adverse events (OR=0.67, 95% CI, 0.29-1.54, P =0.35, I 2 =58%) or serious adverse events (OR=1.28, 95% CI, 0.69-2.36, P =0.43, I 2 =0%). Furthermore, no significant differences were found between the NICT and NCT groups regarding R0 resection rates, anastomotic leakage, pulmonary infection, and postoperative hoarseness. CONCLUSIONS: Neoadjuvant immune checkpoint inhibitors combined with chemotherapy demonstrate efficacy and safety in treating resectable oesophageal squamous cell carcinoma. Nevertheless, additional randomized trials are required to confirm the optimal treatment regimen.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Terapia Neoadjuvante , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/cirurgia , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/cirurgia , Fístula Anastomótica , Resposta Patológica Completa
15.
Carbohydr Polym ; 326: 121654, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142084

RESUMO

Although flexible double layer capacitors based on hydrogels overcome the drawbacks of commercial double layer capacitors such as low safety and non-deformability, it is still considered as attractive challenges to achieve high conductivity for hydrogel electrolytes as well as high operating voltages for hydrogel flexible supercapacitors. In this paper, ion migration channels were engineered by immobilizing positive and negative charges on polymer skeleton and dispersing cellulose nanofibers in the polymerized polyelectrolyte network, providing ultra-high ionic conductivity (103 mS cm-1). In addition, K3[Fe(CN)6] was introduced through a soaking method, leading to redox reactions on the surface of carbon electrode during charging and discharging, supporting a relatively wide voltage window (1.8 V). Moreover, the specific capacitance at high current remained 55 % of the specific capacitance at low current, indicating excellent rate performance. In addition, the device displayed high cycling stability (80.05 % after 10,000 cycles). Notably, we successfully light up the red LED with only one device. Accordingly, this work provides a feasible design concept for the development of cellulose nanofibers (CNF) hydrogel-based solid-state electrolyte with high conductivity for flexible supercapacitors with wide potential window and high energy density.

16.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39392345

RESUMO

The distributed flow calorimeter is employed to measure reaction enthalpy, mixing enthalpy, and other thermodynamic parameters of hydrocarbon fuels. This information serves as a foundation for selecting and developing hydrocarbon fuels for hypersonic flight. The fluid temperature in the tube is a key factor in characterizing its thermodynamic behavior. Given the challenges of monitoring fluid temperature within a tube using current flow calorimetry, a distributed method for calculating fluid temperature in tubes under high-temperature conditions is proposed. This method realizes the interpolation of the enthalpy function of the experimental fluid through several sets of experiments with varying power levels. The fluid temperature in the tube is calculated by considering the microelement as the research object. First, the methodology for calculating fluid temperature in narrow pipes across a wide temperature range is presented. Second, the simulation model of the flow calorimeter is established, and the methodology is verified through numerical simulation. Finally, a flow calorimetric experimental device is setup. N-decane was used as the fluid in the experiment, and the temperature was calculated, and the calculated results were compared with the NIST data. In the temperature range of 295.50-609.38 K, the relative error range of the calculation of n-decane temperature is -0.61% to 1.24%. The experimental results show that the method can effectively estimate the fluid temperature of the distributed flow calorimeter.

17.
Sci Total Environ ; 948: 174883, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034013

RESUMO

Marine prokaryotes and microeukaryotes are essential components of microbial food webs, and drive the biogeochemical cycling. However, the underlying ecological mechanisms driving prokaryotic and microeukaryotic community assembly in large-scale coastal ecosystems remain unclear. In this study, we studied biogeographic patterns of prokaryotic and microeukaryotic communities in the coastal and shelf ecosystem of the China Seas. Results showed that prokaryotic richness was the highest in the Yangtze River Plume, whereas microeukaryotic richness decreased from south to north. Prokaryotic-microeukaryotic co-occurrence networks display greater complexity in the Yangtze River Plume compared to other regions, potentially indicating higher environmental heterogeneity. Furthermore, the cross-domain networks revealed that prokaryotes were more interconnected with each other than with microeukaryotes or between microeukaryotes, and all hub nodes were bacterial taxa, suggesting that prokaryotes may be more important for sustaining the stability and multifunctionality of coastal ecosystem than microeukaryotes. Variation Partitioning Analysis revealed that approximately equal proportions of environmental, biotic and spatial factors contribute to variations in microbial community composition. Temperature was the primary environmental driver of both prokaryotic and microeukaryotic communities across the China Seas. Additionally, stochastic processes (dispersal limitation) and deterministic processes (homogeneous selection) were two major ecological factors in shaping microeukaryotic and prokaryotic assemblages, respectively, suggesting their different environmental plasticity and evolutionary mechanisms. Overall, these results demonstrate both prokaryotic and microeukaryotic communities displayed a latitude-driven distribution pattern and different assembly mechanisms, improving our understanding of microbial biogeography patterns under global change and anthropogenic activity driven habitat diversification in the coastal and shelf ecosystem.


Assuntos
Ecossistema , China , Oceanos e Mares , Células Procarióticas , Microbiota , Biodiversidade , Água do Mar , Bactérias/classificação , Monitoramento Ambiental
18.
Commun Biol ; 7(1): 1112, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256555

RESUMO

Recruitment of non-canonical BCOR-PRC1.1 to non-methylated CpG islands via KDM2B plays a fundamental role in transcription control during developmental processes and cancer progression. However, the mechanism is still largely unknown on how this recruitment is regulated. Here, we unveiled the importance of the Poly-D/E regions within the linker of BCOR for its binding to KDM2B. Interestingly, we also demonstrated that these negatively charged Poly-D/E regions on BCOR play autoinhibitory roles in liquid-liquid phase separation (LLPS) of BCORANK-linker-PUFD/PCGF1RAWUL. Through neutralizing negative charges of these Poly-D/E regions, Ca2+ not only weakens the interaction between BCOR/PCGF1 and KDM2B, but also promotes co-condensation of the enzymatic core of BCOR-PRC1.1 with KDM2B into liquid-like droplet. Accordingly, we propose that Ca2+ could modulate the compartmentation and recruitment of the enzymatic core of BCOR-PRC1.1 on KDM2B target loci. Thus, our finding advances the mechanistic understanding on how the tethering of BCOR-PRC1.1 enzymatic core to KDM2B is regulated.


Assuntos
Cálcio , Histona Desmetilases com o Domínio Jumonji , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Cálcio/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/química , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Separação de Fases , Proteínas F-Box
19.
Front Oncol ; 14: 1279733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463231

RESUMO

Objective: This study investigates the prognostic significance of inflammatory nutritional scores in patients with locally advanced esophageal squamous cell carcinoma (LA-ESCC) undergoing neoadjuvant chemoimmunotherapy. Methods: A total of 190 LA-ESCC patients were recruited from three medical centers across China. Pre-treatment laboratory tests were utilized to calculate inflammatory nutritional scores. LASSO regression and multivariate logistic regression analyses were conducted to pinpoint predictors of pathological response. Kaplan-Meier and Cox regression analyses were employed to assess disease-free survival (DFS) prognostic factors. Results: The cohort comprised 154 males (81.05%) and 36 females (18.95%), with a median age of 61.4 years. Pathological complete response (pCR) was achieved in 17.38% of patients, while 44.78% attained major pathological response (MPR). LASSO and multivariate logistic regression analyses identified that hemoglobin, albumin, lymphocyte, and platelet (HALP) (P=0.02) as an independent predictors of MPR in LA-ESCC patients receiving neoadjuvant chemoimmunotherapy. Kaplan-Meier and log-rank tests indicated that patients with low HALP, MPR, ypT1-2, ypN0 and, ypTNM I stages had prolonged DFS (P < 0.05). Furthermore, univariate and multivariate Cox regression analyses underscored HALP (P = 0.019) and ypT (P = 0.029) as independent predictive factors for DFS in ESCC. Conclusion: Our study suggests that LA-ESCC patients with lower pre-treatment HALP scores exhibit improved pathological response and reduced recurrence rate. As a comprehensive index of inflammatory nutritional status, pre-treatment HALP may be a reliable prognostic marker in ESCC patients undergoing neoadjuvant chemoimmunotherapy.

20.
Sci Total Environ ; 925: 171742, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494022

RESUMO

BACKGROUND: No study has examined the association between per- and polyfluoroalkyl substances (PFAS) exposure and chronic obstructive pulmonary disease (COPD) risk. This study aims to explore this relationship. METHODS: This study enrolled 4541 individuals who had available data on PFAS, COPD, and covariates from NHANES 2007-2018. Serum PFAS including perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) were analyzed, because of high detective rates. Considering the skew distribution of PFAS levels, the natural logarithm-transformed PFAS (Ln-PFAS) was used. Logistic regression analysis, restricted cubic spline (RCS), and weighted quantile sum (WQS) regression were performed to explore the single, nonlinear, and mixed effects. A mediating analysis was used to evaluate the mediated effects of albumin. RESULTS: Individuals with COPD had higher levels of PFHxS, PFNA, PFOA, and PFOS compared to those without COPD. Ln-PFNA (OR males: 1.92, 95 % CI:1.31 to 2.80, P: <0.001; OR females: 1.07, 95 % CI: 0.81 to 1.40, P: 0.636) and ln-PFOA (OR males: 2.17, 95 % CI:1.38 to 3.41, P: <0.001; OR females: 1.49, 95 % CI: 1.08 to 2.05, P: 0.016) were associated with COPD risk especially in males. The interaction between PFNA exposure and sex on COPD risk was significant (P interaction: <0.001). The RCS curve demonstrated the nonlinear relationship between the ln-PFOA (P nonlinear:0.001), ln-PFNA (P nonlinear:0.045), and COPD risk in males. WQS analysis showed mixed PFAS exposure was correlated with COPD risk in males (OR: 1.44, 95 % CI:1.18 to 1.75, P: <0.001). Albumin mediated the relationship between PFOA and COPD (mediated proportion: -17.94 %). CONCLUSION: This study concludes PFOA and PFNA are linked to a higher COPD risk in males, and serum albumin plays a mediating role in the relationship between PFOA and COPD. Thess findings are beneficial for the prevention of COPD. Further studies are required to explore potential mechanisms.


Assuntos
Ácidos Alcanossulfônicos , Caprilatos , Poluentes Ambientais , Ácidos Graxos , Fluorocarbonos , Doença Pulmonar Obstrutiva Crônica , Masculino , Feminino , Humanos , Inquéritos Nutricionais , Albumina Sérica , Prevalência , Alcanossulfonatos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa