RESUMO
BACKGROUND: Malignant tumours seriously threaten human life and health, and effective treatments for cancer are still being explored. The ability of SHC SH2 domain-binding protein 1 (SHCBP1) to induce cell cycle disturbance and inhibit tumour growth has been increasingly studied, but its dynamic role in the tumour cell cycle and corresponding effects leading to mitotic catastrophe and DNA damage have rarely been studied. RESULTS: In this paper, we found that the nucleoprotein SHCBP1 exhibits dynamic spatiotemporal expression during the tumour cell cycle, and SHCBP1 knockdown slowed cell cycle progression by inducing spindle disorder, as reflected by premature mitotic entry and multipolar spindle formation. This dysfunction was caused by G2/M checkpoint impairment mediated by downregulated WEE1 kinase and NEK7 (a member of the mammalian NIMA-related kinase family) expression and upregulated centromere/kinetochore protein Zeste White 10 (ZW10) expression. Moreover, both in vivo and in vitro experiments confirmed the significant inhibitory effects of SHCBP1 knockdown on tumour growth. Based on these findings, SHCBP1 knockdown in combination with low-dose DNA-damaging agents had synergistic tumouricidal effects on tumour cells. In response to this treatment, tumour cells were forced into the mitotic phase with considerable unrepaired DNA lesions, inducing mitotic catastrophe. These synergistic effects were attributed not only to the abrogation of the G2/M checkpoint and disrupted spindle function but also to the impairment of the DNA damage repair system, as demonstrated by mass spectrometry-based proteomic and western blotting analyses. Consistently, patients with low SHCBP1 expression in tumour tissue were more sensitive to radiotherapy. However, SHCBP1 knockdown combined with tubulin-toxic drugs weakened the killing effect of the drugs on tumour cells, which may guide the choice of chemotherapeutic agents in clinical practice. CONCLUSION: In summary, we elucidated the role of the nucleoprotein SHCBP1 in tumour cell cycle progression and described a novel mechanism by which SHCBP1 regulates tumour progression and through which targeting SHCBP1 increases sensitivity to DNA-damaging agent therapy, indicating its potential as a cancer treatment.
Assuntos
Neoplasias , Proteômica , Animais , Humanos , Proliferação de Células/genética , Ciclo Celular/genética , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Mamíferos/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismoRESUMO
BACKGROUND: Non-invasive chromosome screening (NICS) and trophectoderm biopsy preimplantation genetic testing for aneuploidy (TE-PGT) were both applied for embryo ploidy detection, However, the cumulative live birth rates (CLBR) of NICS and TE-PGT in older age groups have yet to be reported. This study aimed to ascertain whether NICS and TE-PGT could enhance the cumulative live birth rates among patients of advanced maternal age. METHODS: A total of 384 couples aged 35-40 years were recruited. The patients were assigned to three groups: NICS, TE-PGT, and intracytoplasmic sperm injection (ICSI). All patients received frozen single blastocyst transfer. Patients in the NICS and TE-PGT groups underwent aneuploidy screening. RESULTS: When compared to the ICSI group, the CLBR was significantly higher in the NICS and TE-PGT groups (27.9% vs. 44.9% vs. 51.0%, p = 0.003 for NICS vs. ICSI, p < 0.001 for TE-PGT vs. ICSI). There were no significant differences in the clinical outcomes between the NICS and TE-PGT groups. Adjusting for confounding factors, the NICS and TE-PGT groups still showed a higher CLBR than the ICSI group (adjusted odds ratio (OR) 3.847, 95% confidence interval (CI) 1.939 to 7.634; adjusted OR 3.795, 95% CI 1.981 to 7.270). Additionally, the cumulative pregnancy loss rates of the NICS and TE-PGT groups were significantly lower than that of the ICSI group (adjusted OR 0.277, 95% CI 0.087 to 0.885; adjusted OR 0.182, 95% CI 0.048 to 0.693). There was no significant difference in the birth weights of the three groups (p = 0.108). CONCLUSIONS: In women 35-40 years old, the CLBR can be increased by selecting euploid embryos using NICS and TE-PGT. For elderly women at high risk of embryonic aneuploidy, NICS, characterized by its safety and non-invasive nature, may emerge as an alternative option for preimplantation genetic testing.
Assuntos
Aneuploidia , Testes Genéticos , Idade Materna , Diagnóstico Pré-Implantação , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Diagnóstico Pré-Implantação/métodos , Adulto , Gravidez , Estudos Prospectivos , Testes Genéticos/métodos , Nascido Vivo , Coeficiente de Natalidade , Taxa de Gravidez , Masculino , Transferência Embrionária/métodosRESUMO
PURPOSE: The purpose of the study was to evaluate the quantitative relationship between Oxygen Desaturation Index (ODI) and sleep structure of obstructive sleep apnea (OSA) and cardiac remodeling. METHODS: In this study, patients were enrolled from January 2015 to October 2022, and were divided into 3 groups according to AHI: patients with AHI < 15, patients with 15 ≤ AHI < 30, and 260 patients with AHI ≥ 30. Stratified linear regression was used to analyze independent risk factors for cardiac remodeling in OSA. RESULTS: A total of 479 patients were enrolled. We found that compared with AHI < 15 group (n = 120), the group with AHI > 30 (n = 260) had increased left atrial anteroposterior diameter, left ventricular end-diastolic internal diameter, left ventricular posterior wall thickness, right ventricular anteroposterior diameter, and interventricular septal thickness (P < 0.05). The group with 15 ≤ AHI ≤ 30 (n = 99) had increased left atrial anteroposterior diameter (P < 0.05). Multivariate linear regression revealed that N2 sleep was an independent risk factor for left ventricular posterior wall thickness, with positive correlation (p < 0.05). N3 sleep was an independent risk factor for transverse right atrial diameter and right ventricular anteroposterior diameter, with negative correlation (P < 0.05). ODI was an independent risk factor for interventricular septal thickness, with positive correlation (P < 0.05). The arousal index was an independent risk factor for increased left atrial anteroposterior diameter, with positive correlation (P < 0.05). CONCLUSIONS: Increased ODI is an independent risk factor for interventricular septal thickness, while decreased slow wave sleep is an independent risk factor for right heart remodeling in OSA.
Assuntos
Oxigênio , Apneia Obstrutiva do Sono , Humanos , Remodelação Ventricular , Polissonografia , SonoRESUMO
Numerous studies have demonstrated the role of making choices as an internal motivator to improve performance, and recent studies in the domain of memory have focused on adults. To chart the developmental trend of the choice effect on memory, we conducted a series of seven experiments involving children, adolescents, and young adults. Participants (N = 512) aged 5 to 26 years performed a choice encoding task that manipulated the opportunities to choose and then took a memory test. Using different types of experimental materials and corroborated by a mini meta-analysis, we found that the choice effect on memory was significant in childhood and early adolescence but not significant in late adolescence and early adulthood. The developmental changes were statistically significant, particularly evident during the transition from early to late adolescence. These findings suggest that the internal value of choice decreases across development and contributes to our understanding of developmental differences in the role of choice in memory.
Assuntos
Desenvolvimento Infantil , Comportamento de Escolha , Humanos , Adolescente , Comportamento de Escolha/fisiologia , Feminino , Masculino , Criança , Adulto Jovem , Adulto , Pré-Escolar , Desenvolvimento Infantil/fisiologia , Memória , Fatores EtáriosRESUMO
OBJECTIVES: Heart rate variability (HRV) is becoming more prevalent as a measurable parameter in wearable sleep-monitoring devices, which are simple and effective instruments for illness evaluation. Currently, most studies on investigating OSA severity and HRV have measured heart rates during wakefulness or sleep. Therefore, the objective of this study was to investigate the circadian rhythm of HRV in male patients with OSA and its value for the estimation of OSA severity using group-based trajectory modeling. METHODS: Patients with complaints of snoring were enrolled from the Sleep Center of Shandong Qianfoshan Hospital. Patients were divided into 3 groups according to apnea hypopnea index (AHI in events/h), as follows: (<15, 15≤AHI<30, and ≥30). HRV parameters were calculated using 24 h Holter monitoring, which included time-domain and frequency-domain indices. Circadian differences in the standard deviation of normal to normal (SDNN) were evaluated for OSA severity using analysis of variance, trajectory analysis, and multinomial logistic regression. RESULTS: A total of 228 patients were enrolled, 47 with mild OSA, 48 moderate, and 133 severe. Patients with severe OSA exhibited reduced triangular index and higher very low frequency than those in the other groups. Circadian HRV showed that nocturnal SDNN was considerably higher than daytime SDNN in patients with severe OSA. The difference among the OSA groups was significant at 23, 24, 2, and 3 o'clock sharp between the severe and moderate OSA groups (all P<0.05). The heterogeneity of circadian HRV trajectories in OSA was strongly associated with OSA severity, including sleep structure and hypoxia-related parameters. Among the low-to-low, low-to-high, high-to-low, and high-to-high groups, OSA severity in the low-to-high group was the most severe, especially compared with the low-to-low and high-to-low SDNN groups, respectively. CONCLUSIONS: Circadian HRV in patients with OSA emerged as low daytime and high nocturnal in SDNN, particularly in men with severe OSA. The heterogeneity of circadian HRV revealed that trajectories with low daytime and significantly high nighttime were more strongly associated with severe OSA. Thus, circadian HRV trajectories may be useful to identify the severity of OSA.
Assuntos
Ritmo Circadiano , Frequência Cardíaca , Índice de Gravidade de Doença , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/diagnóstico , Masculino , Frequência Cardíaca/fisiologia , Ritmo Circadiano/fisiologia , Adulto , Pessoa de Meia-Idade , Polissonografia , Eletrocardiografia AmbulatorialRESUMO
In the present study, neuroprotective effect of sevoflurane in combination with ketamine was investigated on TNF-α induced necroptosis of neurons and cognitive impairment in the rat model. The results demonstrated that exposure to TNF-α/z-VAD led to a significant decrease in viability of HT-22 neuronal cells. However, incubation of HT-22 cells with ketamine plus sevoflurane inhibited decrease in viability induced by TNF-α/z-VAD exposure. The increase in production of ROS by TNF-α/z-VAD exposure in HT-22 cells was effectively suppressed on pre-treatment with ketamine plus sevoflurane. Moreover, suppression of TNF-α/z-VAD induced ROS production in HT-22 cells by ketamine plus sevoflurane pretreatment was higher in comparison to ketamine or sevoflurane treatment alone. Treatment of HT-22 cells with ketamine plus sevoflurane suppressed TNF-α/z-VAD induced increase in RIP1 and p-MLKL protein expression. Ketamine plus sevoflurane treatment effectively reversed decrease in movement speed as well as total distance traveled in TNF-α injected rats. The number of neurons in rat hippocampus injected with TNF-α showed a significant decrease more specifically in carbonic anhydrase-3 region. However, no significant change in the density of neurons was observed in the hippocampus of rats pretreated with ketamine plus sevoflurane by TNF-α injection. The increase in expression of p-MLKL and p-RIP3 by TNF-α injection was effectively reversed in rats on treatment with ketamine plus sevoflurane. In silico studies revealed that ketamine interacts with p-MLKL protein in different confirmations with the binding affinities ranging from -9.7 to -8.4 kcal/mol. It was found that ketamine binds to p-MLKL protein by interacting with alanine (ALA A:295), proline (PRO A:306), glutamine (GLN A: 307) and isoleucine (ILE A:293) amino acid residues. In summary, ketamine plus sevoflurane combination alleviates TNF-α/z-VAD induced decrease in viability of HT-22 cells in vitro and rat hippocampus neurons in vivo. Moreover, ketamine plus sevoflurane combination prevented TNF-α injection induced cognitive impairment in rats. Therefore, sevoflurane plus ketamine combination can be developed as a potential therapeutic regimen for treatment of isoflurone induced cognitive impairment.
Assuntos
Disfunção Cognitiva , Ketamina , Fármacos Neuroprotetores , Ratos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Sevoflurano , Espécies Reativas de Oxigênio/metabolismoRESUMO
OBJECTIVE: To investigate the etiology, diagnosis and treatment of 45,X/46,XY mixed gonadal dysgenesis and the patients' clinical characteristics of conception, pregnancy and delivery, with purpose of improving the treatment and pregnancy management of the patients. METHODS: We retrospectively analyzed the clinical data on a pregnant patient with 45,X/46,XY mixed gonadal dysgenesis. RESULTS: Based on the findings of hypoplasia of secondary sexual characteristics, streak gonads, chromosome karyotype incompatibility with social sex, and chromosome aberration in the gonadal tissue, the patient was diagnosed with 45,X/46,XY mixed gonadal dysgenesis, received oocyte donation and intracytoplasmic sperm injection-embryo transfer (ICSI-ET), and achieved a live birth. CONCLUSION: Female patients with 45,X/46,XY mixed gonadal dysgenesis are infertile, but can achieve pregnancy through oocyte donation. However, the incidence rates of pregnancy complications and abnormal delivery are higher in these patients than in normal females. The perinatal outcomes can be improved by efficient treatment and pregnancy management of the patients.
Assuntos
Doação de Oócitos , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Gravidez , Adulto , Injeções de Esperma Intracitoplásmicas/métodos , Nascido Vivo , Disgenesia Gonadal Mista , Transferência Embrionária , Estudos Retrospectivos , Resultado da Gravidez , Disgenesia Gonadal 46 XYRESUMO
Chemotherapy resistance remains a major obstacle in the treatment of esophageal cancer. Previous researches have shown that an increase in exosomal PD-L1 expression was positively associated with a more advanced clinical stage, a poorer prognosis as well as drug resistance in patients with esophageal squamous cell carcinoma (ESCC). To explore the role of exosomal PD-L1 in ESCC, we performed bioinformatics analysis as well as several in vitro/in vivo functional experiments in a parental sensitive cell line EC-9706 and its derivative, a paclitaxel-resistant subline EC-9706R, and found that the exosomal PD-L1 from EC-9706R was higher than that from EC-9706. Moreover, exosomes from EC-9706R significantly increased invasion, migration and chemoresistance of EC-9706. Anti-PD-L1 treatment in combination with chemotherapy also led to reduced tumor burden in vivo. Inhibition of the release of exosomes by GW4869 or inhibition of STAT3 phosphorylation by stattic could effectively reverse the resistance to paclitaxel mediated by exosomal PD-L1. Furthermore, we found that PD-L1, miR-21, and multidrug resistance (MDR1) gene are involved in the process of exosomal transfer. Moreover, PD-L1 could enhance miR-21 expression by increasing the enrichment of STAT3 on miR-21 promoter. Our results suggested that exosomal PD-L1 may contribute to drug resistance to paclitaxel by regulating the STAT3/miR-21/PTEN/Akt axis and promote tumorigenic phenotype. This study provides a novel potential therapeutic approach to reverse chemoresistance and tumor progression through exosomal PD-L1 in ESCC patients.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Exossomos , MicroRNAs , Humanos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Exossomos/genética , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
INTRODUCTION: This study aimed to construct artificial intelligence models based on thoracic CT images to perform segmentation and classification of benign pleural effusion (BPE) and malignant pleural effusion (MPE). METHODS: A total of 918 patients with pleural effusion were initially included, with 607 randomly selected cases used as the training cohort and the other 311 as the internal testing cohort; another independent external testing cohort with 362 cases was used. We developed a pleural effusion segmentation model (M1) by combining 3D spatially weighted U-Net with 2D classical U-Net. Then, a classification model (M2) was built to identify BPE and MPE using a CT volume and its 3D pleural effusion mask as inputs. RESULTS: The average Dice similarity coefficient, Jaccard coefficient, precision, sensitivity, Hausdorff distance 95% (HD95) and average surface distance indicators in M1 were 87.6±5.0%, 82.2±6.2%, 99.0±1.0%, 83.0±6.6%, 6.9±3.8 and 1.6±1.1, respectively, which were better than those of the 3D U-Net and 3D spatially weighted U-Net. Regarding M2, the area under the receiver operating characteristic curve, sensitivity and specificity obtained with volume concat masks as input were 0.842 (95% CI 0.801 to 0.878), 89.4% (95% CI 84.4% to 93.2%) and 65.1% (95% CI 57.3% to 72.3%) in the external testing cohort. These performance metrics were significantly improved compared with those for the other input patterns. CONCLUSIONS: We applied a deep learning model to the segmentation of pleural effusions, and the model showed encouraging performance in the differential diagnosis of BPE and MPE.
Assuntos
Derrame Pleural Maligno , Derrame Pleural , Humanos , Biomarcadores Tumorais , Inteligência Artificial , Derrame Pleural/diagnóstico por imagem , Derrame Pleural/patologia , Derrame Pleural Maligno/diagnóstico por imagem , Sensibilidade e EspecificidadeRESUMO
Obtaining a high quality factor (Q factor) in applications based on metasurfaces is crucial for improving device performance. Therefore, bound states in the continuum (BICs) with ultra-high Q factors are expected to have many exciting applications in photonics. Breaking the structure symmetry has been viewed as an effective way of exciting quasi-bound states in the continuum (QBICs) and generating high-Q resonances. Among these, one exciting strategy is based on the hybridization of surface lattice resonances (SLRs). In this study, we investigated for the first time the Toroidal dipole bound states in the continuum (TD-BICs) based on the hybridization of Mie surface lattice resonances (SLRs) in an array. The unit cell of metasurface is made of a silicon nanorods dimer. The Q factor of QBICs can be precisely adjusted by changing the position of two nanorods, while the resonance wavelength remains quite stable against the change of position. Simultaneously, the far-field radiation and near-field distribution of the resonance are discussed. The results indicate that the toroidal dipole dominates this type of QBIC. Our results indicate that this quasi-BIC can be tuned by adjusting the size of the nanorods or the lattice period. Meanwhile, through the study of the shape variation, we found that this quasi-BIC exhibits excellent robustness, whether in the case of two symmetric or asymmetric nanoscale structures. This will also provide large fabrication tolerance for the fabrication of devices. Our research results will improve the mode analysis of surface lattice resonance hybridization, and may find promising applications in enhancing light-matter interaction, such as lasing, sensing, strong-coupling, and nonlinear harmonic generation.
RESUMO
Clinical trials on icotinib, a first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), have shown promising results as targeted therapy for non-small cell lung cancer (NSCLC). This study aimed to establish an effective scoring system to predict the one-year progression-free survival (PFS) of advanced NSCLC patients with EGFR mutations treated with icotinib as targeted therapy. A total of 208 consecutive patients with advanced EGFR-positive NSCLC treated with icotinib were enrolled in this study. Baseline characteristics were collected within 30 days before icotinib treatment. PFS was taken as the primary endpoint and the response rate as the secondary endpoint. Least absolute shrinkage and selection operator (LASSO) regression analysis and Cox proportional hazards regression analysis were used to select the optimal predictors. We evaluated the scoring system using a five-fold cross-validation. PFS events occurred in 175 patients, with a median PFS of 9.9 months (interquartile range, 6.8-14.5). The objective response rate (ORR) was 36.1%, and the disease control rate (DCR) was 67.3%. The final ABC-Score consisted of three predictors: age, bone metastases and carbohydrate antigen 19-9 (CA19-9). Upon comparison of all three factors, the combined ABC-score (area under the curve (AUC)= 0.660) showed a better predictive accuracy than age (AUC = 0.573), bone metastases (AUC = 0.615), and CA19-9 (AUC = 0.608) individually. A five-fold cross-validation showed good discrimination with AUC = 0.623. The ABC-score developed in this study was significantly effective as a prognostic tool for icotinib in advanced NSCLC patients with EGFR mutations.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Antígeno CA-19-9 , Antineoplásicos/farmacologia , Receptores ErbB , Estudos Retrospectivos , Prognóstico , MutaçãoRESUMO
Germinated edible seeds and sprouts have attracted consumers because of their nutritional values and health benefits. To ensure the microbial safety of the seed and sprout, emerging processing methods involving physical fields (PFs), having the characteristics of high efficiency and environmental safety, are increasingly proposed as effective decontamination processing technologies. This review summarizes recent progress on the application of PFs to germinating edible seeds, including their impact on microbial decontamination and nutritional quality and the associated influencing mechanisms in germination. The effectiveness, application scope, and limitation of the various physical techniques, including ultrasound, microwave, radio frequency, infrared heating, irradiation, pulsed light, plasma, and high-pressure processing, are symmetrically reviewed. Good application potential for improving seed germination and sprout growth is also described for promoting the accumulation of bioactive compounds in sprouts, and subsequently enhancing the antioxidant capacity under favorable PFs processing conditions. Moreover, the challenges and future directions of PFs in the application to germinated edible seeds are finally proposed. This review also attempts to provide an in-depth understanding of the effects of PFs on microbial safety and changes in nutritional properties of germinating edible seeds and a theoretical reference for the future development of PFs in processing safe sprouted seeds.
RESUMO
BACKGROUND: To investigate the baseline data characteristic, human leukocyte antigen (HLA) polymorphisms, and panel reactive antibody (PRA) in end-stage kidney disease (ESKD) patients awaiting kidney transplantation in Southwest China. METHODS: HLA genotyping was performed using the real-time PCR sequence-specific primer. PRA was detected by enzyme-linked immunosorbent assay. The patients' medical records were extracted from the hospital information database. RESULTS: A total of 281 kidney transplant candidates with ESKD were analyzed. The average age was 35.7 ± 13.8 years. There were 61.6% patients had hypertension, 40.2% patients had dialysis ≥ 3 times per week, 47.3% patients had moderate or severe anemia, 30.2% patients with albumin < 35 g/L, 49.1% patients had serum ferritin < 200 ng/mL, 40.5% patients had serum calcium in target range (2.23 - 2.80 mmol/L), 43.4% patients had serum phosphate in target range (1.45 - 2.10 mmol/L), and 93.6% patients with parathyroid hormone > 88.00 pg/mL. In total, 15 HLA-A, 28 HLA-B, 15 HLA-DRB1, and 8 HLA-DQB1 allelic groups were identified. The most frequent alleles for each locus were HLA-A*02 (33.63%), HLA-B*46 (14.41%), HLA-DRB1*15 (21.89%), and HLA-DQB1*05 (39.50%). The most frequent haplotypes were HLA-A*33-B*58-DRB1*17-DQB1*02. A total of 9.60% of patients tested positive for PRAs - Class I or Class II. CONCLUSIONS: The data from this study provide some new insights into baseline data, the distribution of HLA polymorphisms, and PRA results in the population of Southwest China. This is of great significance in this region, and indeed in the country as a whole, in comparison with other populations and in the process of organ transplant allocation.
Assuntos
Transplante de Rim , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Alelos , Cadeias HLA-DRB1 , Haplótipos , ChinaRESUMO
The weak coupling of a toroidal dipole (TD) to an electromagnetic field offers great potential for the advanced design of photonic devices. However, simultaneous excitation of electric toroidal dipoles (ETDs) and magnetic toroidal dipoles (MTDs) is currently difficult to achieve. In this work, we propose a hybrid metasurface based on Si and phase transition material G e 2 S b 2 S e 4 T e 1 (GSST), which is formed by four Si columns surrounding a GSST column and can simultaneously excite two different TD (ETD and MTD) resonances. We also calculated the electric field distribution, magnetic field distribution, and multipole decomposition of the two resonances, and the results show that the two modes are ETD resonance and MTD resonance, respectively. The polarization characteristics of these two modes are also investigated, and the average field enhancement factor (EF) of the two modes is calculated. The dynamic modulation of the relative transmission and EF is also achieved based on the tunable properties of the phase change material GSST. Our work provides a way to realize actively tunable TD optical nanodevices.
RESUMO
Acetaminophen (APAP) overdose induces acute liver injury (ALI), even acute liver failure (ALF). There is a significant unmet need to furtherly elucidate the mechanisms and find new therapeutic target. Recently, emerging evidence indicates that nicotinamide adenine dinucleotide (NAD+) plays a crucial role in APAP-induced ALI. Herein, we firstly investigated the protein expression of NAD kinase (NADK), as the rate-limiting enzyme converting NAD+ to nicotinamide adenine dinucleotide phosphate (NADP+), and found it was positively correlated with APAP-induced ALI in a dose- and time-dependent manner. Additionally, supplementation of N-acetylcysteine (NAC), known as an antidote of APAP, mitigated the ALI and downregulated the expression of NADK which was also in a dose-dependent manner. Moreover, pretreatment with methotrexate (MTX), the inhibitor of NADK, attenuated the levels of transaminases, alleviated morphological abnormalities, and improved oxidative stress triggered by APAP overdose, which was attributed to elevated hepatic NAD+ pool. Subsequently, the increased NAD+ upregulated the expression of Sirt1, SOD2 and attenuated DNA damage. Collectively, elevated expression of NADK is related to APAP-induced ALI, and inhibition of NADK alleviates the ALI through elevating liver NAD+ level and improving antioxidant capacity.
Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/efeitos adversos , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado , Camundongos , Camundongos Endogâmicos C57BL , NAD , Fosfotransferases (Aceptor do Grupo Álcool)RESUMO
BACKGROUND: Timely identification of epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement status in patients with non-small cell lung cancer (NSCLC) is essential for tyrosine kinase inhibitors (TKIs) administration. We aimed to use artificial intelligence (AI) models to predict EGFR mutations and ALK rearrangement status using common demographic features, pathology and serum tumor markers (STMs). METHODS: In this single-center study, demographic features, pathology, EGFR mutation status, ALK rearrangement, and levels of STMs were collected from Wuhan Union Hospital. One retrospective set (N = 1089) was used to train diagnostic performance using one deep learning model and five machine learning models, as well as the stacked ensemble model for predicting EGFR mutations, uncommon EGFR mutations, and ALK rearrangement status. A consecutive testing cohort (n = 1464) was used to validate the predictive models. RESULTS: The final AI model using the stacked ensemble yielded optimal diagnostic performance with areas under the curve (AUC) of 0.897 and 0.883 for predicting EGFR mutation status and 0.995 and 0.921 for predicting ALK rearrangement in the training and testing cohorts, respectively. Furthermore, an overall accuracy of 0.93 and 0.83 in the training and testing cohorts, respectively, were achieved in distinguishing common and uncommon EGFR mutations, which were key evidence in guiding TKI selection. CONCLUSIONS: In this study, driverless AI based on robust variables could help clinicians identify EGFR mutations and ALK rearrangement status and provide vital guidance in TKI selection for targeted therapy in NSCLC patients.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinase do Linfoma Anaplásico/genética , Inteligência Artificial , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Aberrações Cromossômicas , Estudos de Coortes , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Estudos RetrospectivosRESUMO
RESEARCH QUESTION: Can a non-invasive embryo transfer strategy provide a reference for embryo selection to be established? DESIGN: Chromosome sequencing of 345 paired blastocyst culture medium and whole blastocyst samples was carried out and a non-invasive embryo grading system was developed based on the random forest machine learning algorithm to predict blastocyst ploidy. The system was validated in 266 patients, and a blinded prospective observational study was conducted to investigate clinical outcomes between machine learning-guided and traditional non-invasive preimplantation genetic testing for aneuploidy (niPGT-A) analyses. Embryos were graded as A, B or C according to their euploidy probability levels predicted by non-invasive chromosomal screening (NICS). RESULTS: Higher live birth rate was observed in A- versus C-grade embryos (50.4% versus 27.1%, Pâ¯=â¯0.006) and B- versus C-grade embryos (45.3% versus 27.1%, Pâ¯=â¯0.022) and lower miscarriage rate in A- versus C-grade embryos (15.9% versus 33.3%, Pâ¯=â¯0.026) and B- versus C-grade embryos (14.3% versus 33.3%, Pâ¯=â¯0.021). The embryo utilization rate was significantly higher through the machine learning strategy than the conventional dichotomic judgment of euploidy or aneuploidy in the niPGT-A analysis (78.8% versus 57.9%, P < 0.001). Better outcomes were observed in A- and B-grade embryos versus C-grade embryos and higher embryo utilization rates through the machine learning strategy compared with traditional niPGT-A analysis. CONCLUSION: A machine learning guided embryo grading system can be used to optimize embryo selection and avoid wastage of potential embryos.
Assuntos
Diagnóstico Pré-Implantação , Aneuploidia , Blastocisto , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro , Testes Genéticos , Humanos , GravidezRESUMO
Background: High expression of PIN1 is associated with gastric cancer progression and risk. Patients & methods: Two single-nucleotide polymorphisms in PIN1, rs2233678 and rs2233679, were examined in gastric cancer patients using PCR-restriction fragment length polymorphism. Results: The rs2233678 GC genotype and C alleles correlated with a decreased susceptibility to gastric cancer. The stratification analysis indicated that the rs2233678 GC genotype was inversely related to gastric cancer risk in never smokers, never drinkers and patients with stage I/II disease. Males and ever drinkers carrying the rs2233679 CT genotype had a mildly elevated susceptibility to gastric cancer. Conclusion: The PIN1 single-nucelotide polymorphisms rs2233678 and rs2233679 correlate with the risk of gastric cancer.
PIN1 is associated with gastric cancer progression and risk. Genetic polymorphisms, the most common type of genetic variation, are important in cancer susceptibility. Hence we examined the relationship between two single-nucleotide polymorphisms (rs2233678 and rs2233679) in PIN1 and gastric cancer patients. We found that the rs2233678 GC genotype and C alleles correlated with a decreased susceptibility to gastric cancer, and the stratification analysis indicated that the rs2233678 GC genotype was inversely related to gastric cancer risk in never smokers, never drinkers and patients with stage I/II disease. Males and ever drinkers carrying the rs2233679 CT genotype had a mildly elevated susceptibility to gastric cancer. The PIN1 polymorphisms rs2233678 and rs2233679 may be associated with gastric cancer risk.
Assuntos
Neoplasias Gástricas , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Peptidilprolil Isomerase de Interação com NIMA/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/genéticaRESUMO
The aim of this study was to investigate the protective effect of nicotinamide adenine dinucleotide (NAD+) against acute liver injury (ALI) induced by acetaminophen (APAP) overdose in mice. First, serum transaminases were used to assess the protective effect of NAD+, and the data revealed that NAD+ mitigated the APAP-induced ALI in a dose-dependent manner. Then, we performed hematoxylin-eosin staining of liver tissues and found that NAD+ alleviated the abnormalities of histopathology. Meanwhile, increase in the malondialdehyde content and decrease in glutathione, superoxide dismutase (SOD), and glutathione peroxidase were identified in the APAP group, which were partially prevented by the NAD+ pretreatment. Moreover, compared with the mice treated with APAP only, the expression of poly ADP-ribose polymerase 1 (PARP1), Sirtuin1 (Sirt1), SOD2, nuclear factor erythroid 2-related factor 2 (Nrf2), and hemoxygenase-1 was upregulated, while Kelch-like ECH-associated protein 1 and histone H2AX phosphorylated on Ser-139 were downregulated by NAD+ in NAD+ + APAP group. Conversely, NAD+ could not correct the elevated expression of phospho-Jun N-terminal kinase and phospho-extracellular signal-regulated kinase induced by APAP. Taken together, these findings suggest that NAD+ confers an anti-ALI effect to enhance the expression of PARP1 and Sirt1, and to simultaneously stimulate the Nrf2 anti-oxidant signaling pathway.
Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado , Camundongos , NAD/metabolismo , NAD/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Sirtuína 1/metabolismoRESUMO
CONTEXT: Polyphyllin II (PPII) is a steroidal saponin isolated from Rhizoma Paridis. It exhibits significant antitumor activity such as anti-proliferation and pro-apoptosis in lung cancer. OBJECTIVE: To explore whether PPII induce autophagy and the relationship between autophagy and apoptosis in non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS: The effects of PPII (0, 1, 5, and 10 µM) were elucidated by CCK8 assay, colony formation test, TUNEL staining, MDC method, and mRFP-GFP-LC3 lentivirus transfection in A549 and H1299 cells for 24 h. DMSO-treated cells were selected as control. The protein expression of autophagy (LC3-II, p62), apoptosis (Bcl-2, Bax, caspase-3) and p-mTOR was detected by Western blotting. We explored the relationship between autophagy and apoptosis by autophagy inhibitor CQ (10 µM) and 3-MA (5 mM). RESULTS: PPII (0, 1, 5, and 10 µM) inhibited the proliferation and induced apoptosis. The IC50 values of A549 and H1299 cells were 8.26 ± 0.03 and 2.86 ± 0.83 µM. We found that PPII could induce autophagy. PPII promoted the formation of autophagosome, increased the expression of LC3-II/LC3-I (p < 0.05), while decreased p62 and p-mTOR (p < 0.05). Additionally, the co-treatment with autophagy inhibitors promoted the protein expression of c-caspase-3 and rate of Bax/Bcl-2 (p < 0.05), compared with PPII-only treatment group. Therefore, our results indicated that PPII-induced autophagy may be a mechanism to promote cell survival, although it can also induce apoptosis. CONCLUSIONS: PPII-induced apoptosis exerts its anticancer activity by inhibiting autophagy, which will hopefully provide a prospective compound for NSCLC treatment.