Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(15): 6091-6097, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35877983

RESUMO

Skyrmion racetrack memories are highly attractive for next-generation data storage technologies. Skyrmions are noncollinear spin textures stabilized by chiral interactions. To achieve a fast-operating memory device, it is critical to move skyrmions at high speeds. The skyrmion dynamics induced by spin-orbit torques (SOTs) in the commonly studied ferromagnetic films is hindered by strong pinning effects and a large skyrmion Hall effect causing deflection of the skyrmion toward the racetrack edge, which can lead to information loss. Here, we investigate the current-induced nucleation and motion of skyrmions in ferrimagnetic Pt/CoGd/(W or Ta) thin films. We first reveal field-free skyrmion nucleation mediated by Joule heating. We then achieve fast skyrmion motion driven by SOTs with velocities as high as 610 m s-1 and a small skyrmion Hall angle |θSkHE| ≲ 3°. Our results show that ferrimagnets are better candidates for fast skyrmion-based memory devices with low risk of information loss.

2.
Phys Rev Lett ; 124(19): 197204, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469573

RESUMO

An important goal of spintronics is to covert a charge current into a spin current with a controlled spin polarization that can exert torques on an adjacent magnetic layer. Here we demonstrate such torques in a two ferromagnet system. A CoNi multilayer is used as a spin current source in a sample with structure CoNi/Au/CoFeB. Spin torque ferromagnetic resonance is used to measure the torque on the CoFeB layer. The response as a function of the applied field angle and current is consistent with the symmetry expected for a torque produced by the planar Hall effect originating in CoNi. We find the strength of this effect to be comparable to that of the spin Hall effect in platinum, indicating that the planar Hall effect holds potential as a spin current source with a controllable polarization direction.

3.
Adv Sci (Weinh) ; 8(18): e2100481, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338450

RESUMO

Ferrimagnetic thin films are attractive for low-power spintronic applications because of their low magnetization, small angular momentum, and fast spin dynamics. Spin orbit torques (SOT) can be applied with proximal heavy metals that also generate interfacial Dzyaloshinskii-Moriya interactions (DMI), which can stabilize ultrasmall skyrmions and enable fast domain wall motion. Here, the properties of a ferrimagnetic CoGd alloy between two heavy metals to increase the SOT efficiency, while maintaining a significant DMI is studied. SOT switching for various capping layers and alloy compositions shows that Pt/CoGd/(W or Ta) films enable more energy-efficient SOT magnetization switching than Pt/CoGd/Ir. Spin-torque ferromagnetic resonance confirms that Pt/CoGd/W has the highest spin-Hall angle of 16.5%, hence SOT efficiency, larger than Pt/CoGd/(Ta or Ir). Density functional theory calculations indicate that CoGd films capped by W or Ta have the largest DMI energy, 0.38 and 0.32 mJ m-2 , respectively. These results show that Pt/CoGd/W is a very promising ferrimagnetic structure to achieve small skyrmions and to move them efficiently with current.

4.
Sci Rep ; 11(1): 15082, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301961

RESUMO

In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate [Formula: see text], with Ni, Permalloy ([Formula: see text]) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in [Formula: see text] is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the [Formula: see text] with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa