Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 300(8): 107556, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002683

RESUMO

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.


Assuntos
Aplysia , Isoformas de Proteínas , Animais , Aplysia/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Receptores de Taquicininas/metabolismo , Receptores de Taquicininas/genética , Taquicininas/metabolismo , Taquicininas/genética , Sequência de Aminoácidos , Transdução de Sinais , Processamento Alternativo , Humanos
2.
J Am Chem Soc ; 146(25): 17103-17113, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869216

RESUMO

Understanding the interfacial hydrogen evolution reaction (HER) is crucial to regulate the electrochemical behavior in aqueous zinc batteries. However, the mechanism of HER related to solvation chemistry remains elusive, especially the time-dependent dynamic evolution of the hydrogen bond (H-bond) under an electric field. Herein, we combine in situ spectroscopy with molecular dynamics simulation to unravel the dynamic evolution of the interfacial solvation structure. We find two critical change processes involving Zn-electroplating/stripping, including the initial electric double layer establishment to form an H2O-rich interface (abrupt change) and the subsequent dynamic evolution of an H-bond (gradual change). Moreover, the number of H-bonds increases, and their strength weakens in comparison with the bulk electrolyte under bias potential during Zn2+ desolvation, forming a diluted interface, resulting in massive hydrogen production. On the contrary, a concentrated interface (H-bond number decreases and strength enhances) is formed and produces a small amount of hydrogen during Zn2+ solvation. The insights on the above results contribute to deciphering the H-bond evolution with competition/corrosion HER during Zn-electroplating/stripping and clarifying the essence of electrochemical window widened and HER suppression by high concentration. This work presents a new strategy for aqueous electrolyte regulation by benchmarking the abrupt change of the interfacial state under an electric field as a zinc performance-enhancement criterion.

3.
Angew Chem Int Ed Engl ; 63(5): e202316112, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088222

RESUMO

Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 □0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7 mAh/g~Li2O prelithiation capacity (≈980 mAh/g for prelithiation agent). Coupled 6.5 wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270 Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.

4.
J Biol Chem ; 298(10): 102440, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049520

RESUMO

The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite the progress, molecular mechanisms governing LK peptide-receptor interactions remain to be elucidated. Previously, we identified a precursor protein for Aplysia leucokinin-like peptides (ALKs) that contains the greatest number of amidated peptides among LK precursors in all species identified so far. Here, we identified the first ALK receptor from Aplysia, ALKR. We used cell-based IP1 activation assays to demonstrate that two ALK peptides with the most copies, ALK1 and ALK2, activated ALKR with high potencies. Other endogenous ALK-derived peptides bearing the FXXWX-amide motif also activated ALKR to various degrees. Our examination of cross-species activity of ALKs with the Anopheles LK receptor was consistent with a critical role for the FXXWX-amide motif in receptor activity. Furthermore, we showed, through alanine substitution of ALK1, the highly conserved phenylalanine (F), tryptophan (W), and C-terminal amidation were each essential for receptor activation. Finally, we used an artificial intelligence-based protein structure prediction server (Robetta) and Autodock Vina to predict the ligand-bound conformation of ALKR. Our model predicted several interactions (i.e., hydrophobic interactions, hydrogen bonds, and amide-pi stacking) between ALK peptides and ALKR, and several of our substitution and mutagenesis experiments were consistent with the predicted model. In conclusion, our results provide important information defining possible interactions between ALK peptides and their receptors. The workflow utilized here may be useful for studying other ligand-receptor interactions for a neuropeptide signaling system, particularly in protostomes.


Assuntos
Aplysia , Inteligência Artificial , Neuropeptídeos , Receptores de Neuropeptídeos , Animais , Amidas , Aplysia/genética , Aplysia/metabolismo , Ligantes , Mutagênese , Neuropeptídeos/química , Neuropeptídeos/genética , Conformação Proteica , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/genética
5.
J Am Chem Soc ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029335

RESUMO

Element doping/substitution has been recognized as an effective strategy to enhance the structural stability of layered cathodes. However, abundant substitution studies not only lack a clear identification of the substitution sites in the material lattice, but the rigid interpretation of the transition metal (TM)-O covalent theory is also not sufficiently convincing, resulting in the doping/substitution proposals being dragged into design blindness. In this work, taking Li1.2Ni0.2Mn0.6O2 as a prototype, the intense correlation between the "disordered degree" (Li/Ni mixing) and interface-structure stability (e.g., TM-O environment, slab/lattice, and Li+ reversibility) is revealed. Specifically, the degree of disorder induced by the Mg/Ti substitution extends in the opposite direction, conducive to sharp differences in the stability of TM-O, Li+ diffusion, and anion redox reversibility, delivering fairly distinct electrochemical performance. Based on the established paradigm of systematic characterization/analysis, the "degree of disorder" has been shown to be a powerful indicator of material modification by element substitution/doping.

6.
Small ; 19(41): e2302912, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37312398

RESUMO

Lithium-rich manganese-based layered oxides (LRM) have garnered considerable attention as cathode materials due to their superior performance. However, the inherent structural degradation and obstruction of ion transport during cycling lead to capacity and voltage decay, impeding their practical applications. Herein, an Sb-doped LRM material with local spinel phase is reported, which has good compatibility with the layered structure and provides 3D Li+ diffusion channels to accelerate Li+ transport. Additionally, the strong Sb-O bond enhances the stability of the layered structure. Differential electrochemical mass spectrometry indicates that highly electronegative Sb doping effectively suppresses the release of oxygen in the crystal structure and mitigates successive electrolyte decomposition, thereby reducing structural degradation of the material. As a result of this dual-functional design, the 0.5 Sb-doped material with local spinel phases exhibits favorable cycling stability, retaining 81.7% capacity after 300 cycles at 1C, and an average discharge voltage of 1.87 mV per cycle, which is far superior to untreated material with retention values of 28.8% and 3.43 mV, respectively. This study systematically introduces Sb doping and regulates local spinel phases to facilitate ion transport and alleviate structural degradation of LRM, thereby suppressing capacity and voltage fading, and improving the electrochemical performance of batteries.

7.
Inorg Chem ; 58(21): 14316-14324, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31622084

RESUMO

Two new cyano-bridged mixed-valence {FeIII2(µ-CN)4FeII2} clusters, {[(Tp)FeIII(CN)3]2[FeII(Py2N2)]2}·(ClO4)2·MeCN·Et2O (1·MeCN·Et2O), its solvent-free form (1), and {[(Tp)FeIII(CN)3]2[FeII(Me2Py2N2)]2}·(ClO4)2·5MeOH (2·5MeOH), were obtained [Tp = hydrotris(pyrazol-1-yl)borate; N,N'-bis(2-pyridylmethyl)-N,N'-bis(4-X-benzyl)-1,2-ethanediamine, Py2N2, X = H; Me2Py2N2, X = Me]. Complexes 1 and 2·5MeOH exhibit gradual thermally induced two-step spin-crossover behavior (SCO) at two FeII metal centers, and the transformation of high-spin (HS) to low-spin (LS) FeII ions with temperature was confirmed by a combination of X-ray crystallography, variable-temperature Fourier transform infrared, variable-temperature magnetic susceptibility, and 57Fe Mössbauer spectroscopy. Moreover, complexes 1·MeCN·Et2O and 1 exhibit a reversible single-crystal-to-single-crystal transformation, and complex 1 undergoes two-step SCO behavior with T1/2 = 178 and 93 K accompanied by symmetry breaking in the structure.

8.
Phys Chem Chem Phys ; 20(2): 732-737, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242875

RESUMO

Searching for new two-dimensional (2D) Dirac cone materials has been popular since the exfoliation of graphene. Herein, based on density functional theory, we predict a novel family of 2D Dirac cone materials in square transition-metal carbides MC6 (M = Mo, W) which show inherent stability confirmed by phonon spectrum analysis and ab initio molecular dynamics calculations. The Dirac point, located exactly at the Fermi level, mainly arises from the hybridization of M-dz2,x2-y2 and C-pz orbitals which gives rise to an ultrahigh Fermi velocity comparable to that of graphene. Moreover, strong spin-orbit coupling related to M-d electrons can generate large band gaps of 35 and 89 meV for MoC6 and WC6 monolayers, respectively, which allows MC6 materials to be operable at room temperature (26 meV), as candidates for nanoelectronics in the upcoming post-silicon era. The conceived novel stable metal-carbon framework materials provide a platform for designing 2D Dirac cone materials.

9.
Phys Chem Chem Phys ; 20(34): 22168-22178, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30116799

RESUMO

Combining the first-principles density functional method and crystal structure prediction techniques, we report a series of hexagonal two-dimensional transition metal borides including Sc2B2, Ti2B2, V2B2, Cr2B2, Y2B2, Zr2B2, and Mo2B2. Their dynamic and thermal stabilities are testified by phonon and molecular dynamics simulations. We investigate the potential of the two-dimensional Ti2B2 monolayer as an anode material for Li-ion and Na-ion batteries. The Ti2B2 monolayer possesses high theoretical specific capacities of 456 and 342 mA h g-1 for Li and Na, respectively. The very high Li/Na diffusivity with an ultralow energy barrier of 0.017/0.008 eV indicates an excellent charge-discharge capability. In addition, good electronic conductivity during the whole lithiation process is found by electronic structure calculations. The very small change in volume after the adsorption of one, two, and three layers of Li and Na ions indicates that the Ti2B2 monolayer is robust. These results highlight the suitability of Ti2B2 monolayer as well as the other two-dimensional transition metal borides as excellent anode materials for both Li-ion and Na-ion batteries.

10.
Inorg Chem ; 54(20): 9687-9, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26447552

RESUMO

A cyano-bridged {Fe(III)2Co(II)2} complex exhibits reversible thermally and photoinduced intramolecular charge transfer. Its desolvated, MeOH-d4, and other analogues were compared to disclose the impact factors on the electron-transfer behavior of these {Fe(III)2Co(II)2} clusters.

11.
Materials (Basel) ; 17(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893854

RESUMO

The thermal properties, microstructure, and mechanical properties of Fe-18Mn-3Ti (wt%) were investigated, focusing on the effects of different heat-treatment processes. Results revealed that the 450 °C warm-rolling sample (450 WR) exhibited promising mechanical properties. Specifically, this sample displayed a yield strength of 988 MPa, an ultimate tensile strength of 1052 MPa, and total elongation of 15.49%. Consequently, a favorable strength-ductility balance was achieved. The strain-hardening ability surpassed that of the cold rolling sample (CR). Microstructure analysis indicated the simultaneous occurrence of dynamic equilibrium between grain deformation and re-crystallization because of the co-influence of thermal and strain in the warm rolling process. This desirable mechanical property was attributed to the presence of a multi-phase (α-martensite, austenite, and ε-martensite) and heterogeneous microstructure. The improvement of ultimate tensile strength was based on grain refinement, grain co-deformation, and the transformation-induced plasticity (TRIP) effect in the early stage of plastic deformation (stage Ⅰ). The improvement of ultimate elongation (TEL) was ascribed to the TRIP effect in the middle stage of plastic deformation (stage Ⅱ).

12.
Adv Sci (Weinh) ; : e2407538, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283031

RESUMO

Amorphous carbon holds great promise as anode material for sodium-ion batteries due to its cost-effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion-filling sodium storage mechanism is proposed using petroleum coke-derived amorphous carbon as a multi-microcrystalline model. Combining in situ X-ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high-potential sloping capacity. The sodium insertion process occurs in both the pseudo-graphite phase (d002 > 0.370 nm) and graphite-like phase (0.345 ≤ d002 < 0.370 nm) rather than the graphite phase, contributing to low-potential sloping capacity. The sodium filling into accessible closed pores forms quasi-metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion-filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high-performance amorphous carbon anodes.

13.
ACS Nano ; 18(40): 27654-27664, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39323096

RESUMO

After charging to a high state-of-charge (SoC), layered oxide cathodes exhibit high capacities but suffer from gliding-induced structural distortions caused by deep Li depletion within alkali metal (AM) layers, especially for high-nickel candidates. In this study, we identify the essential structure of the detrimental H3 phase formed at high SoC to be an intergrowth structure characterized by random sequences of the O3 and O1 slabs, where the O3 slabs represent Li-rich layers and the O1 slabs denote Li-depleted (or empty) layers that glide from the O3 slabs. Moreover, we adopt two doping strategies targeting different doping sites to eliminate the formation of Li-vacant O1 slabs. First, we introduce direct transition metal (TM) pillars between TMO2 slabs achieved through dopants (e.g., Nb) positioned within AM layers, significantly improving the cycling stability. Second, we introduce indirect Li pillars achieved through dopants located at TM layers to adjust the Li-O bond strength. While this strategy can regulate the uniformity of Li at the slab level, it results in an uneven Li distribution at the particle scale, ultimately failing to enhance the electrochemical performance. Our established research strategy facilitates the realization of diverse pillars between TMO2 slabs through doping, thereby offering guidance for stabilizing high-capacity layered oxide cathodes at high SoC.

14.
Adv Mater ; 36(13): e2312159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117030

RESUMO

Developing sacrificial cathode prelithiation technology to compensate for active lithium loss is vital for improving the energy density of lithium-ion battery full-cells. Li2CO3 owns high theoretical specific capacity, superior air stability, but poor conductivity as an insulator, acting as a promising but challenging prelithiation agent candidate. Herein, extracting a trace amount of Co from LiCoO2 (LCO), a lattice engineering is developed through substituting Li sites with Co and inducing Li defects to obtain a composite structure consisting of (Li0.906Co0.043▫0.051)2CO2.934 and ball milled LiCoO2 (Co-Li2CO3@LCO). Notably, both the bandgap and Li─O bond strength have essentially declined in this structure. Benefiting from the synergistic effect of Li defects and bulk phase catalytic regulation of Co, the potential of Li2CO3 deep decomposition significantly decreases from typical >4.7 to ≈4.25 V versus Li/Li+, presenting >600 mAh g-1 compensation capacity. Impressively, coupling 5 wt% Co-Li2CO3@LCO within NCM-811 cathode, 235 Wh kg-1 pouch-type full-cell is achieved, performing 88% capacity retention after 1000 cycles.

15.
ACS Nano ; 18(35): 24515-24522, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39165001

RESUMO

Topological spin textures are of great significance in magnetic information storage and spintronics due to their high storage density and low drive current. In this work, the transformation of magnetic configuration from chaotic labyrinth domains to uniform stripe domains was observed in MnFe1-xCoxGe magnets. This change occurs due to the noncollinear magnetic structure switching to a uniaxial ferromagnetic structure with increasing Co content, as identified by neutron diffraction results and Lorentz transmission electron microscopy (L-TEM). Of utmost importance, a hexagonal lattice of high-density robust type-II magnetic bubble lattice was established for x = 0.8 through out-of-plane magnetic field stimulation and field-cooling. The dimensions of the type-II magnetic bubbles were found to be tuned by the sample thickness. Therefore, the stabilization of complex magnetic spin textures, associated with enhanced uniaxial ferromagnetic interaction and magnetic dipole-dipole interaction in MnFe1-xCoxGe through magnetic structure manipulation, as further confirmed by the micromagnetic simulations, will provide a convenient and efficient strategy for designing topological spin textures with potential applications in spintronic devices.

16.
Adv Mater ; 36(36): e2407720, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032096

RESUMO

Compensating for the irreversible loss of limited active sodium (Na) is crucial for enhancing the energy density of practical sodium-ion batteries (SIBs) full-cell, especially when employing hard carbon anode with initially lower coulombic efficiency. Introducing sacrificial cathode presodiation agents, particularly those that own potential anionic oxidation activity with a high theoretical capacity, can provide additional sodium sources for compensating Na loss. Herein, Ni atoms are precisely implanted at the Na sites within Na2O framework, obtaining a (Na0.89Ni0.05□0.06)2O (Ni-Na2O) presodiation agent. The synergistic interaction between Na vacancies and Ni catalyst effectively tunes the band structure, forming moderate Ni-O covalent bonds, activating the oxidation activity of oxygen anion, reducing the decomposition overpotential to 2.8 V (vs Na/Na+), and achieving a high presodiation capacity of 710 mAh/g≈Na2O (Na2O decomposition rate >80%). Incorporating currently-modified presodiation agent with Na3V2(PO4)3 and Na2/3Ni2/3Mn1/3O2 cathodes, the energy density of corresponding Na-ion full-cells presents an essential improvement of 23.9% and 19.3%, respectively. Further, not limited to Ni-Na2O, the structure-function relationship between the anionic oxidation mechanism and electrode-electrolyte interface fabrication is revealed as a paradigm for the development of sacrificial cathode presodiation agent.

17.
Science ; 385(6710): 744-752, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146426

RESUMO

Air sensitivity remains a substantial barrier to the commercialization of sodium (Na)-layered oxides (NLOs). This problem has puzzled the community for decades because of the complexity of interactions between air components and their impact on both bulk and surfaces of NLOs. We show here that water vapor plays a pivotal role in initiating destructive acid and oxidative degradations of NLOs only when coupled with carbon dioxide or oxygen, respectively. Quantification analysis revealed that reducing the defined cation competition coefficient (η), which integrates the effects of ionic potential and sodium content, and increasing the particle size can enhance the resistance to acid attack, whereas using high-potential redox couples can eliminate oxidative degradation. These findings elucidate the underlying air deterioration mechanisms and rationalize the design of air-stable NLOs.

18.
Front Pharmacol ; 14: 1132066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021048

RESUMO

The vasopressin/oxytocin signaling system is present in both protostomes and deuterostomes and plays various physiological roles. Although there were reports for both vasopressin-like peptides and receptors in mollusc Lymnaea and Octopus, no precursor or receptors have been described in mollusc Aplysia. Here, through bioinformatics, molecular and cellular biology, we identified both the precursor and two receptors for Aplysia vasopressin-like peptide, which we named Aplysia vasotocin (apVT). The precursor provides evidence for the exact sequence of apVT, which is identical to conopressin G from cone snail venom, and contains 9 amino acids, with two cysteines at position 1 and 6, similar to nearly all vasopressin-like peptides. Through inositol monophosphate (IP1) accumulation assay, we demonstrated that two of the three putative receptors we cloned from Aplysia cDNA are true receptors for apVT. We named the two receptors as apVTR1 and apVTR2. We then determined the roles of post-translational modifications (PTMs) of apVT, i.e., the disulfide bond between two cysteines and the C-terminal amidation on receptor activity. Both the disulfide bond and amidation were critical for the activation of the two receptors. Cross-activity with conopressin S, annetocin from an annelid, and vertebrate oxytocin showed that although all three ligands can activate both receptors, the potency of these peptides differed depending on their residue variations from apVT. We, therefore, tested the roles of each residue through alanine substitution and found that each substitution could reduce the potency of the peptide analog, and substitution of the residues within the disulfide bond tended to have a larger impact on receptor activity than the substitution of those outside the bond. Moreover, the two receptors had different sensitivities to the PTMs and single residue substitutions. Thus, we have characterized the Aplysia vasotocin signaling system and showed how the PTMs and individual residues in the ligand contributed to receptor activity.

19.
Sci Rep ; 13(1): 7662, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169790

RESUMO

Neuropeptides are ubiquitous intercellular signaling molecules in the CNS and play diverse roles in modulating physiological functions by acting on specific G-protein coupled receptors (GPCRs). Among them, the elevenin signaling system is now believed to be present primarily in protostomes. Although elevenin was first identified from the L11 neuron of the abdominal ganglion in mollusc Aplysia californica, no receptors have been described in Aplysia, nor in any other molluscs. Here, using two elevenin receptors in annelid Platynereis dumerilii, we found three putative elevenin GPCRs in Aplysia. We cloned the three receptors and tentatively named them apElevR1, apElevR2, and apElevR3. Using an inositol monophosphate (IP1) accumulation assay, we demonstrated that Aplysia elevenin with the disulfide bond activated the three putative receptors with low EC50 values (ranging from 1.2 to 25 nM), supporting that they are true receptors for elevenin. In contrast, elevenin without the disulfide bond could not activate the receptors, indicating that the disulfide bond is required for receptor activity. Using alanine substitution of individual conserved residues other than the two cysteines, we showed that these residues appear to be critical to receptor activity, and the three different receptors had different sensitivities to the single residue substitution. Finally, we examined the roles of those residues outside the disulfide bond ring by removing these residues and found that they also appeared to be important to receptor activity. Thus, our study provides an important basis for further study of the functions of elevenin and its receptors in Aplysia and other molluscs.


Assuntos
Aplysia , Neuropeptídeos , Animais , Sequência de Aminoácidos , Aplysia/genética , Neuropeptídeos/química , Receptores Acoplados a Proteínas G/química , Dissulfetos
20.
Sci Bull (Beijing) ; 68(1): 65-76, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581534

RESUMO

As a potential substitute for lithium-ion battery, sodium-ion batteries (SIBs) have attracted a tremendous amount of attention due to their advantages in terms of cost, safety and sustainability. Nevertheless, further improvement of the energy density of cathode materials in SIBs remains challenging and requires the activation of anion redox reaction (ARR) activity to provide additional capacity. Herein, we report a high-performance Mn-based sodium oxide cathode material, Na0.67Mg0.1Zn0.1Mn0.8O2 (NMZMO), with synergistic activation of ARR by cosubstitution. This material can deliver an ultra-high capacity of âˆ¼233 mAh/g at 0.1 C, which is significantly higher than their single-cation-substituted counterparts and among the best in as-reported MgMn or ZnMn-based cathodes. Various spectroscopic techniques were comprehensively employed and it was demonstrated that the higher capacity of NMZMO originated from the enhanced ARR activity. Neutron pair distribution function and resonant inelastic X-ray scattering experiments revealed that out-of-plane migration of Mg/Zn occurred upon charging and oxygen anions in the form of molecular O2 were trapped in vacancy clusters in the fully-charged-state. In NMZMO, Mg and Zn mutually interacted with each other to migrate toward tetrahedral sites, which provided a prerequisite for further ARR activity enhancement to form more trapped molecular O2. These findings provide unique insight into the ARR mechanism and can guide the development of high-performance cathode materials through ARR enhancement strategies.


Assuntos
Fontes de Energia Elétrica , Óxidos , Oxirredução , Íons , Eletrodos , Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa