Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(10): e1005173, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26448646

RESUMO

Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1ß upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus infection in the mother-infant dyad initiate immunological and oncogenic signaling cascades within the mammary gland. These findings suggest the mammary gland may have a greater role in infection and immunity than previously thought.


Assuntos
Animais Lactentes/virologia , Interações Hospedeiro-Parasita/fisiologia , Glândulas Mamárias Animais/virologia , Glândulas Mamárias Humanas/virologia , Infecções por Orthomyxoviridae/transmissão , Animais , Animais Recém-Nascidos , Western Blotting , Linhagem Celular , Modelos Animais de Doenças , Feminino , Furões , Humanos , Imuno-Histoquímica , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/virologia , Lactação , Glândulas Mamárias Animais/patologia , Microscopia Confocal , Leite/virologia , Mães , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Orthomyxoviridae/patologia , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
2.
J Virol ; 87(4): 1957-66, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23236062

RESUMO

Ferrets have become an indispensable tool in the understanding of influenza virus virulence and pathogenesis. Furthermore, ferrets are the preferred preclinical model for influenza vaccine and therapeutic testing. Here we characterized the influenza infectome during the different stages of the infectious process in ferrets with and without prior specific immunity to influenza. RNA from lung tissue and lymph nodes from infected and naïve animals was subjected to next-generation sequencing, followed by de novo data assembly and annotation of the resulting sequences; this process generated a library comprising 13,202 ferret mRNAs. Gene expression profiles during pandemic H1N1 (pdmH1N1) influenza virus infection were analyzed by digital gene expression and solid support microarrays. As expected during primary infection, innate immune responses were triggered in the lung tissue; meanwhile, in the lymphoid tissue, genes encoding antigen presentation and maturation of effector cells of adaptive immunity increased dramatically. After 5 days postinfection, the innate immune gene expression was replaced by the adaptive immune response, which correlates with viral clearance. Reinfection with homologous pandemic influenza virus resulted in a diminished innate immune response, early adaptive immune gene regulation, and a reduction in clinical severity. The fully annotated ferret infectome will be a critical aid to the understanding of the molecular events that regulate disease severity and host-influenza virus interactions among seasonal, pandemic, and highly pathogenic avian influenzas.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/patologia , Transcriptoma , Animais , Modelos Animais de Doenças , Furões , Pulmão/patologia , Pulmão/virologia , Linfonodos/patologia , Linfonodos/virologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Fatores de Tempo
3.
J Virol ; 84(17): 8369-88, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20534862

RESUMO

The 2009 H1N1 influenza pandemic has prompted a significant need for the development of efficient, single-dose, adjuvanted vaccines. Here we investigated the adjuvant potential of CpG oligodeoxynucleotide (ODN) when used with a human seasonal influenza virus vaccine in ferrets. We found that the CpG ODN-adjuvanted vaccine effectively increased antibody production and activated type I interferon (IFN) responses compared to vaccine alone. Based on these findings, pegylated IFN-alpha2b (PEG-IFN) was also evaluated as an adjuvant in comparison to CpG ODN and complete Freund's adjuvant (CFA). Our results showed that all three vaccines with adjuvant added prevented seasonal human A/Brisbane/59/2007 (H1N1) virus replication more effectively than did vaccine alone. Gene expression profiles indicated that, as well as upregulating IFN-stimulated genes (ISGs), CpG ODN enhanced B-cell activation and increased Toll-like receptor 4 (TLR4) and IFN regulatory factor 4 (IRF4) expression, whereas PEG-IFN augmented adaptive immunity by inducing major histocompatibility complex (MHC) transcription and Ras signaling. In contrast, the use of CFA as an adjuvant induced limited ISG expression but increased the transcription of MHC, cell adhesion molecules, and B-cell activation markers. Taken together, our results better characterize the specific molecular pathways leading to adjuvant activity in different adjuvant-mediated influenza virus vaccinations.


Assuntos
Furões , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Oligodesoxirribonucleotídeos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Adjuvante de Freund/administração & dosagem , Expressão Gênica , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Humana/virologia , Interferon Tipo I/imunologia , Masculino , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinação
4.
BMC Infect Dis ; 11: 232, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21880131

RESUMO

BACKGROUND: Severe disease caused by 2009 pandemic influenza A/H1N1virus is characterized by the presence of hypercytokinemia. The origin of the exacerbated cytokine response is unclear. As observed previously, uncontrolled influenza virus replication could strongly influence cytokine production. The objective of the present study was to evaluate the relationship between host cytokine responses and viral levels in pandemic influenza critically ill patients. METHODS: Twenty three patients admitted to the ICU with primary viral pneumonia were included in this study. A quantitative PCR based method targeting the M1 influenza gene was developed to quantify pharyngeal viral load. In addition, by using a multiplex based assay, we systematically evaluated host cytokine responses to the viral infection at admission to the ICU. Correlation studies between cytokine levels and viral load were done by calculating the Spearman correlation coefficient. RESULTS: Fifteen patients needed of intubation and ventilation, while eight did not need of mechanical ventilation during ICU hospitalization. Viral load in pharyngeal swabs was 300 fold higher in the group of patients with the worst respiratory condition at admission to the ICU. Pharyngeal viral load directly correlated with plasma levels of the pro-inflammatory cytokines IL-6, IL-12p70, IFN-γ, the chemotactic factors MIP-1ß, GM-CSF, the angiogenic mediator VEGF and also of the immuno-modulatory cytokine IL-1ra (p < 0.05). Correlation studies demonstrated also the existence of a significant positive association between the levels of these mediators, evidencing that they are simultaneously regulated in response to the virus. CONCLUSIONS: Severe respiratory disease caused by the 2009 pandemic influenza virus is characterized by the existence of a direct association between viral replication and host cytokine response, revealing a potential pathogenic link with the severe disease caused by other influenza subtypes such as H5N1.


Assuntos
Citocinas/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/imunologia , Influenza Humana/virologia , Nasofaringe/virologia , Adulto , Estado Terminal , Feminino , Humanos , Influenza Humana/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Carga Viral/métodos
5.
Crit Care ; 14(5): R167, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20840779

RESUMO

INTRODUCTION: Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. METHODS: We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analysis 8.5 (IPA) (Ingenuity Systems, Redwood City, CA) was used to select, annotate and visualize genes by function and pathway (gene ontology). IPA analysis identified those canonical pathways differentially expressed (P < 0.05) between comparison groups. Hierarchical clustering of those genes differentially expressed between groups by IPA analysis was performed using BRB-Array Tools v.3.8.1. RESULTS: The majority of patients were characterized by the presence of comorbidities and the absence of immunosuppressive conditions. pH1N1 specific antibody production was observed around day 9 from disease onset and defined an early period of innate immune response and a late period of adaptive immune response to the virus. The most severe patients (n = 12) showed persistence of viral secretion. Seven of the most severe patients died. During the late phase, the most severe patient group had impaired expression of a number of genes participating in adaptive immune responses when compared to less severe patients. These genes were involved in antigen presentation, B-cell development, T-helper cell differentiation, CD28, granzyme B signaling, apoptosis and protein ubiquitination. Patients with the poorest outcomes were characterized by proinflammatory hypercytokinemia, along with elevated levels of immunosuppressory cytokines (interleukin (IL)-10 and IL-1ra) in serum. CONCLUSIONS: Our findings suggest an impaired development of adaptive immunity in the most severe cases of pandemic influenza, leading to an unremitting cycle of viral replication and innate cytokine-chemokine release. Interruption of this deleterious cycle may improve disease outcome.


Assuntos
Imunidade Adaptativa/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Pandemias , Índice de Gravidade de Doença , Imunidade Adaptativa/imunologia , Adulto , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade
6.
J Virol ; 82(22): 11308-17, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18684821

RESUMO

How viral and host factors contribute to the severe pathogenicity of the H5N1 subtype of avian influenza virus infection in humans is poorly understood. We identified three clusters of differentially expressed innate immune response genes in lungs from H5N1 (A/Vietnam/1203/04) influenza virus-infected ferrets by oligonucleotide microarray analysis. Interferon response genes were more strongly expressed in H5N1-infected ferret lungs than in lungs from ferrets infected with the less pathogenic H3N2 subtype. In particular, robust CXCL10 gene expression in H5N1-infected ferrets led us to test the pathogenic role of signaling via CXCL10's cognate receptor, CXCR3, during H5N1 influenza virus infection. Treatment of H5N1-infected ferrets with the drug AMG487, a CXCR3 antagonist, resulted in a reduction of symptom severity and delayed mortality compared to vehicle treatment. We contend that unregulated host interferon responses are at least partially responsible for the severity of H5N1 infection and provide evidence that attenuating the CXCR3 signaling pathway improves the clinical course of H5N1 infection in ferrets.


Assuntos
Perfilação da Expressão Gênica , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/fisiologia , Pulmão/imunologia , Pulmão/patologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Animais , Quimiocina CXCL10/biossíntese , Furões , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Pulmão/virologia , Masculino , Infecções por Orthomyxoviridae/virologia , Receptores CXCR3/antagonistas & inibidores , Análise de Sobrevida
7.
Mol Immunol ; 45(5): 1288-97, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18006061

RESUMO

Chemokines and their receptors function in the recruitment and activation of cells of the immune system to sites of inflammation. As such, chemokines play an important role in mediating pathophysiological events during microbial infection. In particular, CXCL9, CXCL10 and CXCL11 and their cognate receptor CXCR3 have been associated with the clinical course of several infectious diseases, including severe acute respiratory syndrome (SARS) and influenza. While CXCL9, CXCL10 and CXCL11 share the same receptor and have overlapping functions, each can also have unique activity in host defense. The lack of a preferred characterized animal model for SARS has brought our attention to ferrets, which have been used for years in influenza studies. The lack of immunological reagents for ferrets prompted us to clone CXCL9, CXCL10, CXCL11 and CXCR3 and, in the case of CXCL10, to express the gene as a recombinant protein. In this study we demonstrate that endogenous ferret CXCL10 exhibits similar mRNA expression patterns in the lungs of deceased SARS patients and ferrets experimentally infected with SARS coronavirus. This study therefore represents an important step towards development of the ferret as a model for the role of CXCL9, CXCL10 and CXCL11:CXCR3 axis in severe viral infections.


Assuntos
Quimiocina CXCL10/genética , Regulação da Expressão Gênica , Animais , Quimiocina CXCL11 , Quimiocina CXCL9 , Clonagem Molecular , Furões , Masculino , Modelos Animais , Receptores CXCR3 , Síndrome Respiratória Aguda Grave/genética
8.
Dev Comp Immunol ; 32(8): 890-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18262264

RESUMO

Ferrets (Mustela putorius furo) develop symptoms upon influenza infection that resemble those of humans, including sneezing, body temperature variation and weight loss. Highly pathogenic strains of influenza A, such as H5N1, have the capacity to cause severe illness or death in ferrets. The use of ferrets as a model of influenza infection is currently limited by a lack of species-specific immunological reagents. Interferon gamma (IFN-gamma) plays a key role in the development of innate and adaptive immunity and the regulation of Th1-type immune responses. Here we describe the cloning of the full-length cDNA for ferret IFN-gamma. Multiple sequence alignment of the predicted amino acid sequence with those of other species indicates that the predicted ferret protein shares the highest identity with Eurasian badger IFN-gamma. We raised two hybridoma clones expressing monoclonal antibodies against recombinant ferret IFN-gamma capable of detecting IFN-gamma protein derived from mitogen-stimulated ferret PBMCs by immunoblotting, ELISA and ELISPOT assay. Finally, an ELISA utilizing the ferret-specific antibodies detected elevated levels of IFN-gamma in serum samples from H3N2 influenza A-infected ferrets.


Assuntos
Furões/imunologia , Interferon gama/análise , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Sequência de Bases , Células COS , Chlorocebus aethiops , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Interferon gama/genética , Masculino , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia
9.
PLoS Negl Trop Dis ; 12(3): e0006343, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29538374

RESUMO

Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.


Assuntos
Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Henipavirus/fisiologia , Interações Hospedeiro-Patógeno , Transcriptoma , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Ciclo Celular , Modelos Animais de Doenças , Matriz Extracelular/genética , Furões/virologia , Vírus Hendra/imunologia , Vírus Hendra/patogenicidade , Henipavirus/genética , Infecções por Henipavirus/virologia , Humanos , Inflamação , Interferons/genética , Pulmão/metabolismo , Pulmão/virologia , Vírus Nipah/imunologia , Vírus Nipah/patogenicidade , Eliminação de Partículas Virais
10.
Virology ; 464-465: 177-183, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086242

RESUMO

The major burden of influenza morbidity resides within the elderly population. The challenge managing influenza-associated illness in the elderly is the decline of immune function, where mechanisms leading to immunological senescence have not been elucidated. To better represent the immune environment, we investigated clinical morbidity and immune function during sequential homologous and heterologous H1N1 influenza infection in an aged ferret model. Our findings demonstrated experimentally that aged ferrets had significant morbidity during monosubtypic heterologous 2° challenge with significant weight loss and respiratory symptoms. Furthermore, increased clinical morbidity was associated with slower and shorter hemagglutinin antibody generation and attenuated type 1 T-cell gene responses in peripheral blood. These results revealed dampened immune activation during sequential influenza infection in aged ferrets. With the presence of an aged model, dissecting clinical morbidity, viral dynamics and immune response during influenza infection will aid the development of future prophylactics such as age specific influenza vaccines.


Assuntos
Envelhecimento/imunologia , Imunidade Heteróloga , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Fatores Etários , Idoso , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Masculino , Linfócitos T/imunologia
11.
Virology ; 448: 91-103, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24314640

RESUMO

Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.


Assuntos
Brônquios/citologia , Citocinas/genética , Células Epiteliais/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/genética , Influenza Humana/imunologia , Fusão de Membrana , Brônquios/imunologia , Células Cultivadas , Citocinas/imunologia , Células Epiteliais/virologia , Humanos , Mediadores da Inflamação/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Pandemias
12.
PLoS One ; 7(9): e45842, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029269

RESUMO

In terms of its highly pathogenic nature, there remains a significant need to further define the immune pathology of SARS-coronavirus (SARS-CoV) infection, as well as identify correlates of immunity to help develop vaccines for severe coronaviral infections. Here we use a SARS-CoV infection-reinfection ferret model and a functional genomics approach to gain insight into SARS immunopathogenesis and to identify correlates of immune protection during SARS-CoV-challenge in ferrets previously infected with SARS-CoV or immunized with a SARS virus vaccine. We identified gene expression signatures in the lungs of ferrets associated with primary immune responses to SARS-CoV infection and in ferrets that received an identical second inoculum. Acute SARS-CoV infection prompted coordinated innate immune responses that were dominated by antiviral IFN response gene (IRG) expression. Reinfected ferrets, however, lacked the integrated expression of IRGs that was prevalent during acute infection. The expression of specific IRGs was also absent upon challenge in ferrets immunized with an inactivated, Al(OH)(3)-adjuvanted whole virus SARS vaccine candidate that protected them against SARS-CoV infection in the lungs. Lack of IFN-mediated immune enhancement in infected ferrets that were previously inoculated with, or vaccinated against, SARS-CoV revealed 9 IRG correlates of protective immunity. This data provides insight into the molecular pathogenesis of SARS-CoV and SARS-like-CoV infections and is an important resource for the development of CoV antiviral therapeutics and vaccines.


Assuntos
Imunidade Inata , Interferons/metabolismo , Pulmão/metabolismo , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Vacinação , Animais , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Furões , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferons/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/virologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/prevenção & controle , Transcriptoma , Células Vero , Carga Viral , Vacinas Virais/administração & dosagem
13.
Virology ; 409(1): 102-12, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21035159

RESUMO

Type I interferons (IFNs) are essential to the clearance of viral diseases, however, a clear distinction between genes upregulated by direct virus-cell interactions and genes upregulated by secondary IFN production has not been made. Here, we investigated differential gene regulation in ferrets upon subcutaneous administration of IFN-α2b and during SARS-CoV infection. In vivo experiments revealed that IFN-α2b causes STAT1 phosphorylation and upregulation of abundant IFN response genes (IRGs), chemokine receptors, and other genes that participate in phagocytosis and leukocyte transendothelial migration. During infection with SARS-CoV not only a variety of IRGs were upregulated, but also a significantly broader range of genes involved in cell migration and inflammation. This work allowed dissection of several molecular signatures present during SARS-CoV which are part of a robust IFN antiviral response. These signatures can be useful markers to evaluate the status of IFN responses during a viral infection and specific features of different viruses.


Assuntos
Modelos Animais de Doenças , Furões/virologia , Regulação da Expressão Gênica , Interferon-alfa/imunologia , Proteínas/metabolismo , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Animais , Perfilação da Expressão Gênica , Humanos , Interferon alfa-2 , Interferon-alfa/administração & dosagem , Masculino , Dados de Sequência Molecular , Proteínas/genética , Proteínas Recombinantes , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Análise de Sequência de DNA , Síndrome Respiratória Aguda Grave/virologia , Regulação para Cima
14.
PLoS Negl Trop Dis ; 5(8): e1279, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21858242

RESUMO

The Chikungunya virus infection zones have now quickly spread from Africa to parts of Asia, North America and Europe. Originally thought to trigger a disease of only mild symptoms, recently Chikungunya virus caused large-scale fatalities and widespread economic loss that was linked to recent virus genetic mutation and evolution. Due to the paucity of information on Chikungunya immunological progression, we investigated the serum levels of 13 cytokines/chemokines during the acute phase of Chikungunya disease and 6- and 12-month post-infection follow-up from patients of the Italian outbreak. We found that CXCL9/MIG, CCL2/MCP-1, IL-6 and CXCL10/IP-10 were significantly raised in the acute phase compared to follow-up samples. Furthermore, IL-1ß, TNF-α, Il-12, IL-10, IFN-γ and IL-5 had low initial acute phase levels that significantly increased at later time points. Analysis of symptom severity showed association with CXCL9/MIG, CXCL10/IP-10 and IgG levels. These data give insight into Chikungunya disease establishment and subsequent convalescence, which is imperative to the treatment and containment of this quickly evolving and frequently re-emerging disease.


Assuntos
Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/patologia , Vírus Chikungunya/imunologia , Vírus Chikungunya/patogenicidade , Citocinas/sangue , Surtos de Doenças , Infecções por Alphavirus/imunologia , Seguimentos , Humanos , Itália/epidemiologia , Soro/química
15.
Virology ; 401(2): 257-65, 2010 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-20334888

RESUMO

Immune responses during infection with pandemic H1N1 2009 influenza A virus (2009-H1N1) are still poorly understood. Using an experimental infection model in ferrets, we examined the pathological features and characterized the host immune responses by using microarray analysis, during infection with 2009-H1N1 A/California/07/2009 and seasonal A/Brisbane/59/2007. Chemokines CCL2, CCL8, CXCL7 and CXCL10 along with the majority of interferon-stimulated genes were expressed early, correlated to lung pathology, and abruptly decreased expression on day 7 following infection of A/California/07/2009. Interestingly, the drop in innate immune gene expression was replaced by a significant increase of the adaptive immune genes for granzymes and immunoglobulins. Serum anti-influenza antibodies were first observed on day 7, commensurate with the viral clearance. We propose that lung pathology in humans occurs during the innate phase of host immunity and a delay or failure to switch to the adaptive phase may contribute to morbidity and mortality during severe 2009-H1N1 infections.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Animais , Anticorpos Antivirais/sangue , Citocinas/biossíntese , Furões , Perfilação da Expressão Gênica , Histocitoquímica , Imuno-Histoquímica , Pulmão/patologia , Masculino , Microscopia , Infecções por Orthomyxoviridae/virologia , Fatores de Tempo
16.
J Clin Invest ; 119(12): 3556-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19959874

RESUMO

Natural SIV infection of sooty mangabeys (SMs) is nonprogressive despite chronic virus replication. Strikingly, it is characterized by low levels of immune activation, while pathogenic SIV infection of rhesus macaques (RMs) is associated with chronic immune activation. To elucidate the mechanisms underlying this intriguing phenotype, we used high-density oligonucleotide microarrays to longitudinally assess host gene expression in SIV-infected SMs and RMs. We found that acute SIV infection of SMs was consistently associated with a robust innate immune response, including widespread upregulation of IFN-stimulated genes (ISGs) in blood and lymph nodes. While SMs exhibited a rapid resolution of ISG expression and immune activation, both responses were observed chronically in RMs. Systems biology analysis indicated that expression of the lymphocyte inhibitory receptor LAG3, a marker of T cell exhaustion, correlated with immune activation in SIV-infected RMs but not SMs. Our findings suggest that active immune regulatory mechanisms, rather than intrinsically attenuated innate immune responses, underlie the low levels of immune activation characteristic of SMs chronically infected with SIV.


Assuntos
Cercocebus atys/genética , Cercocebus atys/imunologia , Imunidade Inata/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Imunidade Adaptativa/genética , Animais , Antígenos CD/genética , Linfócitos T CD4-Positivos/imunologia , Cercocebus atys/virologia , Estudo de Associação Genômica Ampla , Interferons/genética , Macaca mulatta , Análise de Sequência com Séries de Oligonucleotídeos , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Especificidade da Espécie , Regulação para Cima , Proteína do Gene 3 de Ativação de Linfócitos
17.
J Virol ; 81(16): 8692-706, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17537853

RESUMO

It is not understood how immune inflammation influences the pathogenesis of severe acute respiratory syndrome (SARS). One area of strong controversy is the role of interferon (IFN) responses in the natural history of SARS. The fact that the majority of SARS patients recover after relatively moderate illness suggests that the prevailing notion of deficient type I IFN-mediated immunity, with hypercytokinemia driving a poor clinical course, is oversimplified. We used proteomic and genomic technology to systematically analyze host innate and adaptive immune responses of 40 clinically well-described patients with SARS during discrete phases of illness from the onset of symptoms to discharge or a fatal outcome. A novel signature of high IFN-alpha, IFN-gamma, and IFN-stimulated chemokine levels, plus robust antiviral IFN-stimulated gene (ISG) expression, accompanied early SARS sequelae. As acute illness progressed, SARS patients entered a crisis phase linked to oxygen saturation profiles. The majority of SARS patients resolved IFN responses at crisis and expressed adaptive immune genes. In contrast, patients with poor outcomes showed deviated ISG and immunoglobulin gene expression levels, persistent chemokine levels, and deficient anti-SARS spike antibody production. We contend that unregulated IFN responses during acute-phase SARS may culminate in a malfunction of the switch from innate immunity to adaptive immunity. The potential for the use of the gene signatures we describe in this study to better assess the immunopathology and clinical management of severe viral infections, such as SARS and avian influenza (H5N1), is therefore worth careful examination.


Assuntos
Perfilação da Expressão Gênica , Interferons/metabolismo , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Feminino , Expressão Gênica , Genômica , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica
18.
J Immunol ; 176(1): 401-15, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16365434

RESUMO

The chemokine system has a critical role in mammalian immunity, but the evolutionary history of chemokines and chemokine receptors are ill-defined. We used comparative whole genome analysis of fruit fly, sea urchin, sea squirt, pufferfish, zebrafish, frog, and chicken to identify chemokines and chemokine receptors in each species. We report 127 chemokine and 70 chemokine receptor genes in the 7 species, with zebrafish having the most chemokines, 63, and chemokine receptors, 24. Fruit fly, sea urchin, and sea squirt have no identifiable chemokines or chemokine receptors. This study represents the most comprehensive analysis of the chemokine system to date and the only complete characterization of chemokine systems outside of mouse and human. We establish a clear evolutionary model of the chemokine system and trace the origin of the chemokine system to approximately 650 million years ago, identifying critical steps in their evolution and demonstrating a more extensive chemokine system in fish than previously thought.


Assuntos
Quimiocinas/genética , Filogenia , Receptores de Quimiocinas/genética , Animais , Evolução Molecular , Humanos , Dados de Sequência Molecular , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
19.
J Immunol ; 176(12): 7196-206, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16751363

RESUMO

The developmental biology of dendritic cells (DC) under physiological conditions remains unclear. In this study, we show that mouse CD11c(+) MHC class II(-)lineage(-) cells are immediate precursors of conventional DC and are widely distributed in both bone marrow and lymphoid tissues. These precursors have a high clonal efficiency, and when cocultured on a supportive stromal monolayer or adoptively transferred in vivo, generate a population CD11c(+)MHC class II(+) DC that retain limited proliferation capacity. During steady state conditions, a small proportion of immediate DC precursors (DCp) and DCs are dividing actively in bone marrow and spleen. Cytokines that initiate and support proliferation of immediate DCp were defined. Collectively, our findings provide evidence of a distinct development pathway for conventional DC in both bone marrow and lymphoid tissues and highlight the importance of in situ replication of immediate DCp and DC in maintaining conventional DC populations.


Assuntos
Divisão Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Homeostase/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Células-Tronco/citologia , Células-Tronco/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Células Clonais , Células Dendríticas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Tecido Linfoide/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/imunologia , Baço/citologia , Baço/imunologia , Baço/metabolismo , Células-Tronco/metabolismo
20.
J Biol Chem ; 278(14): 11985-94, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12551893

RESUMO

The chemokine receptors CCR8 and CX3CR1 are key players in adaptive immunity and are co-receptors for human immunodeficiency virus. We describe here the genomic organization and evolutionary history of both of these genes. CX3CR1 has three promoters that transcribe three separate exons that are spliced with a fourth exon containing the coding region. CCR8 has two promoters. One promoter produces a transcript of two spliced exons, and the other promoter transcribes an exon containing the coding region and lacks introns. We analyzed these promoters in the context of a luciferase reporter and identified several positive and negative regulatory elements. Identification of the genomic organization of these genes in mouse demonstrates a similar organization for CCR8, but mouse CX3CR1 lacks two of the human promoters and has an additional mouse-specific promoter that transcribes only the exon containing the coding region and therefore resembles the organization of the human and mouse CCR8 genes. We also identify two nontranscribed regions that are highly conserved between human and mouse CX3CR1 containing possible regulatory elements. Examination of the CX3CR1 and CCR8 genes and surrounding genomic regions indicates that these genes are the result of the duplication of an ancestral gene prior to the divergence of teleost fish. We characterize single nucleotide polymorphisms in the promoters of human CCR8 and CX3CR1 and establish linkage relationships between CX3CR1 promoter polymorphisms and two previously described CX3CR1 coding polymorphisms associated with human immunodeficiency virus disease progression and arteriosclerosis susceptibility.


Assuntos
Cromossomos Humanos Par 3 , Evolução Molecular , Proteínas de Membrana , Receptores de Quimiocinas/genética , Animais , Sequência de Bases , Receptor 1 de Quimiocina CX3C , Sequência Conservada , Duplicação Gênica , Genoma , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Receptores CCR5/genética , Receptores CCR8 , Takifugu
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa