Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(17): 4703-4705, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424162

RESUMO

P or PK addition significantly affected microbial CUE. No significant linear correlation between respiration rates and microbial CUE under N addition when NP and NPK addition were excluded.

2.
J Sci Food Agric ; 103(15): 7393-7402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37381879

RESUMO

BACKGROUND: Soil fumigation can change soil nutrient cycling processes by affecting soil beneficial microorganisms, which is a key issue for soil fertility. However, the effect of combined application of fumigant and fungicide on soil phosphorus (P) availability remains largely unclear. We investigated the effects of the fumigant chloropicrin (CP) and the fungicide azoxystrobin (AZO) on soil phosphatase activity and soil P fractions in ginger production using a 28-week pot experiment with six treatments: control (CK), a single application of AZO (AZO1), double applications of AZO (AZO2), CP-fumigated soil without AZO (CP), CP combined with AZO1 (CP + AZO1) and CP combined with AZO2 (CP + AZO2). RESULTS: AZO application alone significantly increased the soil labile P fractions (Resin-P + NaHCO3 -Pi + NaOH-Pi) at 9 weeks after planting (WAP) but decreased the soil phosphatase activity at 28 WAP. CP fumigation significantly reduced the soil phosphatase activity but increased the proportions of soil labile P fractions (Resin-P + NaHCO3 -Pi + NaHCO3 -Po) to total P (TP) by 9.0-15.5% throughout the experiment. The combined application of CP and AZO had a synergistic effect on soil phosphatase activity and soil P fractions compared with a single application. CONCLUSION: Although AZO application and CP fumigation can increase soil available P in the short term, they might negatively affect soil fertility in the long run by inhibiting soil phosphatase activity. Soil microbial activities, especially microorganisms related to P cycling, may be responsible for the variations in soil P availability, but further research is needed. © 2023 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Hidrocarbonetos Clorados , Praguicidas , Zingiber officinale , Solo/química , Fósforo , Fungicidas Industriais/farmacologia , Monoéster Fosfórico Hidrolases
3.
Ecotoxicol Environ Saf ; 232: 113246, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091296

RESUMO

Soil chloropicrin (CP) fumigation helps to increase crop yields by eliminating soil-borne diseases which inhibit plant growth. However, little is known about the effect of the CP fumigation combined with fungicide application on plant growth and nutrient uptake. In this study, we conducted a mesocosm experiment with six treatments: CK (untreated soil), AZO1 (a single application of azoxystrobin (AZO)), AZO2 (double applications of AZO), CP (CP fumigation with no AZO), CP+AZO1 (CP combined with AZO1) and CP+AZO2 (CP combined with AZO2) to investigate the effects of CP fumigation and AZO application on ginger growth and phosphorus (P) uptake. Results showed that a single application of AZO had no significant effect on ginger height, biomass and P uptake whether treated with or without CP fumigation, whereas double applications of AZO combined with CP fumigation significantly improved ginger height and the total amount of P in root (P < 0.05). Meanwhile, AZO residues were similar in all treatments with the same number of applications, with less than 50% remaining in the soil after 7 days applied, indicating that CP fumigation treatment did not influence AZO degradation in ginger cultivation. In addition, although the differences in P use efficiency observed across the different treatments were not significant, they nevertheless suggest that the P budget and soil microbial activity may contribute to those differences. Therefore, further studies should be done to link P cycling with microbial communities, and how these related to fumigation and fungicide application.


Assuntos
Hidrocarbonetos Clorados , Zingiber officinale , Fumigação/métodos , Hidrocarbonetos Clorados/análise , Fósforo , Pirimidinas , Solo/química , Microbiologia do Solo , Estrobilurinas
4.
Glob Chang Biol ; 23(11): 4765-4776, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28597589

RESUMO

Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon-climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.


Assuntos
Carbono/metabolismo , Mudança Climática , Microbiologia do Solo , Solo/química , Oklahoma
5.
Environ Sci Technol ; 51(7): 3843-3851, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28264162

RESUMO

Agricultural soil acidification in China is known to be caused by the over-application of nitrogen (N) fertilizers, but the long-term impacts of different fertilization practices on intensive cropland soil acidification are largely unknown. Here, we further developed the soil acidification model VSD+ for intensive agricultural systems and validated it against observed data from three long-term fertilization experiments in China. The model simulated well the changes in soil pH and base saturation over the last 20 years. The validated model was adopted to quantify the contribution of N and base cation (BC) fluxes to soil acidification. The net NO3- leaching and NO4+input accounted for 80% of the proton production under N application, whereas one-third of acid was produced by BC uptake when N was not applied. The simulated long-term (1990-2050) effects of different fertilizations on soil acidification showed that balanced N application combined with manure application avoids reduction of both soil pH and base saturation, while application of calcium nitrate and liming increases these two soil properties. Reducing NH4+ input and NO3- leaching by optimizing N management and increasing BC inputs by manure application thus already seem to be effective approaches to mitigating soil acidification in intensive cropland systems.


Assuntos
Produtos Agrícolas , Solo/química , Agricultura , China , Fertilizantes , Nitrogênio , Tempo
6.
New Phytol ; 210(3): 1022-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27074400

RESUMO

Arbuscular mycorrhizal fungi (AMF) transfer plant photosynthate underground which can stimulate soil microbial growth. In this study, we examined whether there was a potential link between carbon (C) release from an AMF and phosphorus (P) availability via a phosphate-solubilizing bacterium (PSB). We investigated the outcome of the interaction between the AMF and the PSB by conducting a microcosm and two Petri plate experiments. An in vitro culture experiment was also conducted to determine the direct impact of AMF hyphal exudates on growth of the PSB. The AMF released substantial C to the environment, triggering PSB growth and activity. In return, the PSB enhanced mineralization of organic P, increasing P availability for the AMF. When soil available P was low, the PSB competed with the AMF for P, and its activity was not stimulated by the fungus. When additional P was added to increase soil available P, the PSB enhanced AMF hyphal growth, and PSB activity was also stimulated by the fungus. Our results suggest that an AMF and a free-living PSB interacted to the benefit of each other by providing the C or P that the other microorganism required, but these interactions depended upon background P availability.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Micorrizas/fisiologia , Fosfatos/metabolismo , Fósforo/metabolismo , Fosfatase Ácida/metabolismo , Hifas/crescimento & desenvolvimento , Medicago sativa/microbiologia , Ácido Fítico/metabolismo
7.
J Environ Manage ; 172: 2-9, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26905446

RESUMO

Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 µm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale.


Assuntos
Sequestro de Carbono , Carbono , Solo/química , Agricultura , Silicatos de Alumínio , Carbono/análise , Carbono/química , China , Argila , Clima , Florestas , Pradaria
8.
J Environ Manage ; 167: 105-14, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26615226

RESUMO

Accurate modelling of agricultural management impacts on greenhouse gas emissions and the cycling of carbon and nitrogen is complicated due to interactions between various processes and the disturbance caused by field management. In this study, a process-based model, the Soil-Plant-Atmosphere Continuum System (SPACSYS), was used to simulate the effects of different fertilisation regimes on crop yields, the dynamics of soil organic carbon (SOC) and total nitrogen (SN) stocks from 1990 to 2010, and soil CO2 (2007-2010) and N2O (2007-2008) emissions based on a long-term fertilisation experiment with a winter-wheat (Triticum Aestivum L.) and summer-maize (Zea mays L.) intercropping system in Eutric Cambisol (FAO) soil in southern China. Three fertilisation treatments were 1) unfertilised (Control), 2) chemical nitrogen, phosphorus and potassium (NPK), and 3) NPK plus pig manure (NPKM). Statistical analyses indicated that the SPACSYS model can reasonably simulate the yields of wheat and maize, the evolution of SOC and SN stocks and soil CO2 and N2O emissions. The simulations showed that the NPKM treatment had the highest values of crop yields, SOC and SN stocks, and soil CO2 and N2O emissions were the lowest from the Control treatment. Furthermore, the simulated results showed that manure amendment along with chemical fertiliser applications led to both C (1017 ± 470 kg C ha(-1) yr(-1)) and N gains (91.7 ± 15.1 kg N ha(-1) yr(-1)) in the plant-soil system, while the Control treatment caused a slight loss in C and N. In conclusion, the SPACSYS model can accurately simulate the processes of C and N as affected by various fertilisation treatments in the red soil. Furthermore, application of chemical fertilisers plus manure could be a suitable management for ensuring crop yield and sustaining soil fertility in the red soil region, but the ratio of chemical fertilisers to manure should be optimized to reduce C and N losses to the environment.


Assuntos
Fertilizantes , Efeito Estufa , Solo/química , Triticum , Zea mays , Agricultura/métodos , Animais , Carbono/análise , China , Produtos Agrícolas/crescimento & desenvolvimento , Meio Ambiente , Fertilizantes/análise , Efeito Estufa/estatística & dados numéricos , Esterco/análise , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Suínos , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
9.
Water Sci Technol ; 73(5): 1025-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942523

RESUMO

Catalytic wet peroxide oxidation (CWPO) of phenol over clay-based catalysts in the presence and absence of NaCl was investigated. Changes in the H2O2, Cl(-), and dissolved metal ion concentration, as well as solution pH during phenol oxidation, were also studied. Additionally, the intermediates formed during phenol oxidation were detected by liquid chromatography-mass spectroscopy and the chemical bonding information of the catalyst surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that the presence of Cl(-) increased the oxidation rate of phenol to 155%, and this phenomenon was ubiquitous during the oxidation of phenolic compounds by H2O2 over clay-based catalysts. Cl(-)-assisted oxidation of phenol was evidenced by several analytical techniques such as mass spectroscopy (MS) and XPS, and it was hypothesized that the rate-limiting step was accelerated in the presence of Cl(-). Based on the results of this study, the CWPO technology appears to be promising for applications in actual saline phenolic wastewater treatment.


Assuntos
Silicatos de Alumínio/química , Cloretos/química , Peróxido de Hidrogênio/química , Fenol/química , Águas Residuárias/química , Catálise , Argila , Oxirredução , Poluentes Químicos da Água
10.
Sci Total Environ ; 933: 172871, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38697530

RESUMO

Fumigants and fungicides are effective at controlling soil-borne pathogens but might also adversely affect soil beneficial microbes, such as soil phosphorus (P) solubilizing microbes, further altering nutrient cycling processes. Therefore, this study investigated the effects of the fumigant chloropicrin (CP) and the fungicide azoxystrobin (AZO) on soil microeukaryotes and P-cycling related soil bacteria through a greenhouse experiment. Soil microeukaryotic communities and bacterial communities containing two phosphomonoesterase encoding genes (phoC and phoD) were analysed using high-throughput sequencing methods. Results showed that, when applied at the field recommended application dosage, the fungicide AZO had no significant influence on the community structure of soil microeukaryotes and phoD-containing bacteria. However, in CP-fumigated soils, the soil microeukaryotic community composition changed from fungi-dominated to protist-dominated. CP fumigation significantly decreased the total phoC/phoD gene copy number but increased the relative abundance of some phoC/phoD-containing bacteria (such as Sinorhizobium and Streptomyces), which are significantly positively correlated to available P compositions in soil. The structural equation model (SEM) confirmed that CP fumigation could affect soil available P content directly by altering phoC-/phoD-containing bacteria, or indirectly by affecting phoC/phoD gene abundance and acid/alkaline phosphatases activity in soil. The inconsistent changes in phoC/phoD-containing bacteria, phoC/phoD gene number, and the phosphomonoesterase activities indicated that enzyme secretion may not be the only way for P solubilizing soil microorganisms to regulate P availability after soil fumigation. The outcome of this study can provide theoretical support for the design of soil beneficial microorganism recovery strategies and the regulation of phosphate fertilizer after soil fumigation.


Assuntos
Fungicidas Industriais , Hidrocarbonetos Clorados , Fósforo , Pirimidinas , Microbiologia do Solo , Solo , Estrobilurinas , Fósforo/análise , Solo/química , Poluentes do Solo , Fumigação , Bactérias , Microbiota/efeitos dos fármacos
11.
Sci Total Environ ; 916: 170265, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278238

RESUMO

China accounts for around 50 % of the global vegetable harvested area which is expected to increase continuously. Large cropland areas, including rice paddy, have been converted into vegetable cultivation to feed an increasingly affluent population and increase farmers' incomes. However, little information is available on the balance between economic benefits and environmental impacts upon rice paddy conversion into vegetable fields, especially during the initial conversion period. Herein, the life cycle assessment approach was applied to compare the differences in agricultural input costs, yield incomes, net economic benefits (NEB), carbon (C) and nitrogen (N) footprints and net ecosystem economic benefits (NEEB) between the double rice paddy (Rice) and newly vegetable field (Veg) converted from Rice based on a four-year field experiment. Results showed that yield incomes from Veg increased by 96-135 %, outweighing the increased agricultural input costs due to higher inputs of labor and pesticide, thus significantly increasing NEB by 80-137 %, as compared to Rice. Rice conversion into Veg largely increased C footprints by 2.3-10 folds and N footprints by 1.1-2.6 folds, consequently increasing the environmental damage costs (EDC) by 2.2 folds on average. The magnitudes of increases in C and N footprints and EDC due to conversion strongly declined over time. The NEEB, the trade-offs between NEB and EDC, decreased by 18 % in the first year, while increasing by 63 % in the second year and further to 135 % in the fourth year upon conversion. These results suggested that rice paddy conversion into vegetable cultivation could increase the NEB at the expense of enhanced EDC, particular during the initial conversion years. Overall, these findings highlight the importance of introducing interventions to mitigate C and N footprints from newly converted vegetable field, so as to maximize NEEB and realize the green and sustainable vegetable production.


Assuntos
Oryza , Verduras , Carbono , Ecossistema , Nitrogênio/análise , Agricultura/métodos , China , Solo , Fertilizantes
12.
Sci Rep ; 14(1): 7752, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565858

RESUMO

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Assuntos
Compostagem , Gases de Efeito Estufa , Solo , Agricultura/métodos , Triticum , Carbono , Carvão Vegetal , Cloreto de Sódio , Cloreto de Sódio na Dieta , Óxido Nitroso/análise , Dióxido de Carbono/análise
13.
Sci Total Environ ; 934: 172986, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729375

RESUMO

Excessive application of mineral fertilizers has accelerated soil acidification in China, affecting crop production when the pH drops below a critical value. However, the contributions of natural soil acidification, induced by leaching of bicarbonate, and anthropogenic causes of soil acidification, induced by nitrogen (N) transformations and removal of base cations over acid anions, are not well quantified. In this study, we quantified soil acidification rates, in equivalents (eq) of acidity, by assessing the inputs and outputs of all major cations and anions, including calcium, magnesium, potassium, sodium, ammonium, nitrate, bicarbonate, sulphate, phosphate and chloride, for 13 long-term experimental sites in southern China. The acidification rates strongly varied among fertilizer treatments and with the addition of animal manure. Bicarbonate leaching was the dominant acid production process in calcareous soils (23 keq ha-1 yr-1) and in non-calcareous paddy soils (9.6 keq ha-1 yr-1), accounting for 80 % and 68 % of the total acid production rate, respectively. The calcareous soils were strongly buffered, and acidification led no or a limited decline in pH. In contrast, N transformations were the most important driver for soil acidification at one site with upland crops on a non-calcareous soil, accounting for 72 % of total acid production rate of 8.4 keq ha-1 yr-1. In this soil, the soil pH considerably decreased being accompanied by a substantial decline in exchangeable base cation. Reducing the N surplus decreased the acidification rate with 10 to 54 eq per kg N surplus with the lowest value occurring in paddy soils and the highest in the upland soil. The use of manure, containing base cations, partly mitigated the acidifying impact of N fertilizer inputs and crop removal, but enhanced phosphorus (P) accumulation. Combining mineral fertilizer, manure and lime in integrative management strategies can mitigate soil acidification and minimize N and P losses.

14.
Front Endocrinol (Lausanne) ; 15: 1409156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145312

RESUMO

Objectives: This study aimed to investigate the link between 25-hydroxy vitamin D and serum asprosin in individuals with type 2 diabetes within the community. The goal was to provide a foundation for clinical interventions. Methods: Between November 2019 and July 2021, data from 463 patients with type 2 diabetes were consistently gathered at a community health service station in Southeast Shanxi Province. General information and laboratory metrics were compiled, including serum asprosin levels. The participants were categorized based on three serum asprosin quantiles, allowing for a comparison of various factors among the groups. The correlation between serum asprosin levels and other factors was analyzed. Employing a general linear model, the connection between 25-hydroxy vitamin D and serum asprosin levels was studied. Utilizing three quantiles of 25-hydroxy vitamin D, serum asprosin was treated as the dependent variable, while 25-hydroxy vitamin D served as the independent variable for linear regression analysis. Results: As serum asprosin increased, there were gradual increments in age, disease duration, SBP, BMI, WC, creatinine, and SUA levels (P<0.05). Conversely, HbA1c, HDL-C, GFR, and 25-hydroxy vitamin D levels exhibited gradual declines (P<0.05). Age, 25-hydroxy vitamin D, SUA, creatinine, and LDL-C emerged as independent influencing factors for serum asprosin. Across the 1st to 3rd 25-hydroxy vitamin D quantiles, elevated 25-hydroxy vitamin D levels correlated with a gradual reduction in mean serum asprosin (P<0.05). Conclusion: Serum asprosin levels demonstrate an inverse correlation with 25-hydroxy vitamin D levels in community-dwelling individuals with type 2 diabetes. Serum asprosin levels might independently contribute to 25-hydroxy vitamin D levels.


Assuntos
Diabetes Mellitus Tipo 2 , Fibrilina-1 , Vitamina D , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Vitamina D/sangue , Vitamina D/análogos & derivados , Feminino , Masculino , Pessoa de Meia-Idade , Fibrilina-1/sangue , Idoso , Biomarcadores/sangue , Adulto , Adipocinas
15.
Sci Total Environ ; 916: 170189, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246368

RESUMO

Elevated nitrogen (N) fertilization has largely increased crop production in China, but also increased acidification risks, thereby threatening crop yields. However, natural soil acidification due to bicarbonate (HCO3) leaching and base cation (BC) removal by crop harvest also affect soil acidity whereas the input of HCO3 and BC via fertilizers and manure counteract soil acidification. Insights in rates and drivers of soil acidification in different land use types is too limited to support crop- and site-specific mitigation strategies. In this study, we assessed the historical changes in cropland acidification rates and their drivers for the period 1985-2019 at 151 sites in a typical Chinese county with the combined nutrient and soil acidification model VSD+. VSD+ could well reproduce long-term changes in pH and in the BC concentrations of calcium, magnesium and potassium between 1985 and 2019 in non-calcareous soils. In paddy soils, the acidity production rate decreased from 1985 onwards, mainly driven by a pH-induced reduction in HCO3 leaching and N transformations. In upland soils, however, acidity production was mainly driven by N transformations and hardly changed over time. Crop BC removal by harvesting played a minor role in both paddy and upland soils, but its relative importance increased in paddy soils. The acidity input was partly neutralized by HCO3 input from fertilizers and manure, which decreased over time due to a change from ammonia bicarbonate to urea. Soil buffering by both BC and aluminium release decreased in paddy soils due to a reduction in net acidity production, while it stayed relatively constant in upland soils. We conclude that acidification management in paddy soils requires a focus on avoiding high HCO3 leaching whereas the management in upland soils should focus on balancing N with recycling organic manure and crop residues.

16.
Sci Total Environ ; 902: 166175, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562612

RESUMO

Labile carbon (C) input and fertilization have important consequences for soil organic matter (SOM) decomposition via the priming effect (PE), thereby impacting soil fertility and C sequestration. However, it remains largely uncertain on how the labile C input levels interact with long-term fertilization history to control PE intensity. To clarify this question, soil samples were collected from a 38-year fertilization field experiment (including five treatments: chemical nitrogen fertilizer, N; chemical fertilizer, NPK; manure, M1; 200 % manure, M2; NPK plus M2, NPKM2), with strongly altered soil physiochemical properties (i.e., soil aggregation, organic C and nutrient availability). These soil samples were incubated with three input levels of 13C-glucose (without glucose, control; low, 0.4 % SOC; high, 2.0 % SOC) to clarify the underlying mechanisms of PE. Results showed that the PE significantly increased with glucose input levels, with values increasing from negative or weak (-2.21 to 3.55 mg C g-1 SOC) at low input level to strongly positive (5.62 to 8.57 mg C g-1 SOC) at high input level across fertilization treatments. The increased PE intensity occurred along with decreased dissolved total nitrogen (DTN) contents and increased ratios of dissolved organic C to DTN, implying that the decline in N availability largely increased PE via enhanced microbial N mining from SOM. Compared to N and NPK treatments, the PE was significantly lower in the manure-amendment treatments, especially for low input level, due to more stable SOM by aggregate protection and higher N and phosphorus availability. These results suggested that manure application could alleviate SOM priming via increased soil C stability and nutrient availability. Collectively, our findings emphasize the importance of long-term fertilization-driven changes in labile C inputs, SOM stability, and nutrient availability in regulating PE and soil C dynamics. This knowledge advances our understanding of the long-term fertilization management for soil C sequestration.

17.
Sci Total Environ ; 903: 166657, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659538

RESUMO

To boost crop production, China uses almost a third of the world's nitrogen (N) fertilizer. However, N losses due to enhanced application of N fertilizers has led to surface water and groundwater pollution. A reduction in N losses without reducing crop yields is possible by increasing nitrogen use efficiency (NUE), which is important for the effective management of local crop production and water quality. This study used two representative agricultural counties in China (Quzhou and Qiyang) to assess if it is possible to achieve N loss thresholds in surface and groundwater by optimizing N management measures while maintaining actual crop production. We used a spatially explicit N balance model to assess the spatial variation in actual N inputs to soil and N losses to water, and in critical N losses and associated agricultural N inputs. We also used this model to calculate the spatial variation in actual NUEs and the required NUE to align actual crop production with N thresholds. We then assessed the feasibility of achieving the necessary NUE changes through optimizing agricultural N management strategies. It was found that actual N input exceeded critical N input in 95 and 83 % of the agricultural area in Quzhou and Qiyang, respectively. To meet actual crop production without exceeding N loss thresholds, the NUE needs to increase with 11 to 15 % whereas the total N input needs to be reduced by 37 %. NUE gaps can be closed by reducing N rates, enhancing organic manure recycling, and using efficiency-enhancing fertilizers, with optimal combinations being dependent on site conditions.

18.
Sci Total Environ ; 881: 163531, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37076009

RESUMO

Wheat breeding has progressively increased yield potential through decades of selection, markedly increased the capacity for food production. Nitrogen (N) fertilizer is essential for wheat production and N agronomic efficiency (NAE) is commonly index used for evaluate the effects of N fertilizer on crop yield, calculated as the difference of wheat yield between N fertilizer treatment and non-N fertilizer treatment divided by the total N application rate. However, the impact of variety on NAE and its interaction with soil fertility remain unknown. Here, to clarify whether and how wheat variety contributes to NAE, and to determine if soil conditions should be considered in variety selection, we conduct a large-scale analysis of data from 12,925 field trials spanning ten years and including 229 wheat varieties, 5 N fertilizer treatments, and a range of soil fertility across China's major wheat production zones. The national average NAE was 9.57 kg kg-1, but significantly differed across regions. At both the national and regional scales, variety significantly affected NAE, and different varieties showed high variability in their performance among low, moderate, and high fertility soils. Here, superior varieties with both high yield and high NAE were identified at each soil fertility fields. The comprehensive effect of selecting regionally superior varieties, optimizing N management, and improving soil fertility could potentially decrease the yield gap by 67 %. Therefore, variety selection based on soil conditions could facilitate improved food security while reducing fertilizer inputs to alleviate environmental impacts.


Assuntos
Solo , Triticum , Nitrogênio/análise , Fertilizantes/análise , Melhoramento Vegetal , Agricultura
19.
Materials (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38204000

RESUMO

To improve the potassium availability of feldspar at ordinary temperatures, the mechanical grinding and addition of sodium hydroxide/salts were employed to study the effects of mechanical activation and strong alkali addition on particle characteristics, water-soluble potassium, and the available potassium of feldspar. A laser particle size analyzer was utilized for the direct determination of particle size distribution (PSD) using ground samples. The Brunauer-Emmett-Teller (BET) method was employed for specific surface areas. X-ray diffraction (XRD) was employed for structural characterization, scanning electron microscopy (SEM) for morphology exploration, and energy dispersive spectroscopy (EDS) to determine the chemical composition of potassium feldspar powder. The results revealed that the mechanical activation of potassium feldspar could reduce the particle size and produce agglomerated nanoparticles in the later period. The addition of NaOH and sodium salt did not cause agglomeration, and NaOH dissolved the nanoparticles. The water-soluble potassium content of feldspar in each treatment increased during mechanical grinding, from 21.64 mg kg-1 to 1495.81 mg·kg-1, by adding NaOH 5% weight of potassium feldspar powder and to 3044.08 mg·kg-1 by adding NaOH 10% weight with effects different from those of mechanical shaking. By comparison, only 162.93 mg·kg-1 water-soluble potassium was obtained by adding NaOH 5% weight. The dissolved potassium in the former case was significantly higher than in the latter, and the addition of NaOH and sodium salts significantly enhanced the water-soluble potassium contents due to ion exchange. Furthermore, the addition of sodium hydroxide improved the water-soluble potassium due to its mechanochemical action on potassium feldspar. The mechanical energy changed the crystal structure of potassium feldspar, explaining the increase in available potassium. The addition of sodium salts did not promote change in the feldspar's structure, thereby did not raise the available potassium content. The reason for this was related to the mechanochemical action on sodium hydroxide and feldspar, which could promote the dissolution of fine particles, thereby incrementing the available potassium.

20.
Front Plant Sci ; 14: 1325370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38348163

RESUMO

Zinc (Zn) is essential for plants and animals as it plays significant roles in several physiological and biological processes. Its deficiency in soil results in low Zn content food and is one of the major reasons for Zn malnutrition in humans. Biofortification of crops with zinc (Zn) is a viable approach to combat malnutrition, especially in developing countries. A hydroponic study was executed to study response and Zn partitioning in various lentil genotypes. Eight preselected lentil genotypes (Line-11504, Mansehra-89, Masoor-2006, Masoor-85, Line-10502, Markaz-09, Masoor-2004, and Shiraz-96) were grown in solution culture with two Zn levels (control and adequate Zn). Plants were sown in polythene lined iron trays with a two inch layer of prewashed riverbed sand. After 10 days of germination, seedlings were transplanted to a 25L capacity container with nutrient solution for 15 days, and afterward, these plants were divided into two groups, receiving either 2.0 mM Zn or no Zn levels. Three plants of each genotype were harvested at the vegetative growth stage (60 DAT) and the remaining three at physiological maturity (117 DAT). Plants were partitioned into roots, shoots, and grains at harvest. Significant variations in root and shoot dry matter production, grain output, partitioning of Zn in plant parts (root, shoot, and grain), grain phytate reduction, and Zn bioavailability were observed among genotypes. Lentil root accumulated more Zn (54 mg kg-1) with respect to shoot Zn (51 mg kg-1) under Zn supply. The Zn efficient genotypes (Line-11504 and Mansehra-89) produced more root and shoot dry weights at both harvests. There was a positive correlation between the relative growth rate of root and grain phytate concentration (r = 0.55) and [phytate]:[Zn] ratio (r = 0.67). Zn-efficient genotype Mansehra-89 had a maximum root shoot ratio (0.57) and higher grain Zn (60 mg kg-1) with a respectively reduced grain phytate (17 µg g-1) and thus, had more Zn bioavailability (3.01 mg d-1). The genotypic ability for Zn uptake and accumulation within different plant tissues may be incorporated into future crop breeding to improve the nutrition of undernourished consumers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa