Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2321665121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593078

RESUMO

Different mechanisms driving a linear temperature dependence of the resistivity ρ ∼ T at van Hove singularities (VHSs) or metal-insulator transitions when doping a Mott insulator are being debated intensively with competing theoretical proposals. We experimentally investigate this using the exceptional tunability of twisted bilayer (TB) WSe2 by tracking the parameter regions where linear-in-T resistivity is found in dependency of displacement fields, filling, and magnetic fields. We find that even when the VHSs are tuned rather far away from the half-filling point and the Mott insulating transition is absent, the T-linear resistivity persists at the VHSs. When doping away from the VHSs, the T-linear behavior quickly transitions into a Fermi liquid behavior with a T2 relation. No apparent dependency of the linear-in-T resistivity, besides a rather strong change of prefactor, is found when applying displacement fields as long as the filling is tuned to the VHSs, including D ∼ 0.28 V/nm where a high-order VHS is expected. Intriguingly, such non-Fermi liquid linear-in-T resistivity persists even when magnetic fields break the spin-degeneracy of the VHSs at which point two linear in T regions emerge, for each of the split VHSs separately. This points to a mechanism of enhanced scattering at generic VHSs rather than only at high-order VHSs or by a quantum critical point during a Mott transition. Our findings provide insights into the many-body consequences arising out of VHSs, especially the non-Fermi liquid behavior found in moiré materials.

2.
Biochem Genet ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376577

RESUMO

The aim of this study was to investigate the role and mechanism of circ-RNF111 in the human ovarian cancer cell line SKOV-3. First, qRT-PCR was used to detect circ-RNF111 and miR-556-5p expression levels in human normal ovarian epithelial cells IOSE80 and human ovarian cancer cells SKOV-3. CCK-8 and colony formation assays were adopted to determine the proliferation rate and cell viability of SKOV-3 cells, respectively. Additionally, in an attempt to reveal the mechanism of circ-RNF111, we predicted the targeting relationship between miR-556-5p and circ-RNF111 as well as miR-556-5p and CCND1 using the circinteractome and TargetScan databases, respectively, and validated their relationship by dual-luciferase reporter assay. The protein expression levels of CCND1 in SKOV-3 cells were detected by Western blot. Based on the above experiments, the expression of circ-RNF111 was found to be up-regulated in SKOV-3, and the knockdown of circ-RNF111 significantly inhibited the proliferation and viability of SKOV-3 cells. Then we confirmed that circ-RNF111 sponged miR-556-5p in SKOV-3 cells to up-regulate CCND1 expression. In addition, simultaneous inhibition of miR-556-5p or overexpression of CCND1 in SKOV-3 cells with knockdown of circ-RNF111 reversed the inhibitory effect of knockdown of circ-RNF111 on the protein expression level of CCND1, cell proliferation rate, and cell viability. In summary, circ-RNF111 promotes the proliferation of SKOV-3 cells by targeting the miR-556-5p/CCND1 axis. Circ-RNF111 may serve as a potential target for ovarian cancer therapy.

3.
Nano Lett ; 23(17): 7921-7926, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37585490

RESUMO

Moiré superlattices of twisted van der Waals heterostructures provide a promising and tunable platform for simulating correlated two-dimensional physical models. In twisted bilayer transition-metal dichalcogenides with twist angles close to 0°, the Γ and K valley moiré bands are described by the honeycomb and the triangular effective lattice models, respectively, with distinct physics. Using large-scale first-principles calculations, we show that in-plane biaxial strain and out-of-plane pressure provide effective knobs for switching the moiré lattice models that emerged at the band edges in twisted bilayer WSe2 by shifting the energy positions of the Γ and K valley minibands. The shifting mechanism originates from the differences in the orbital characters of the Γ and K valley states and their responses to strain and pressure. The critical strain and pressure for switching the Γ/K valleys are 2.11% and 2.175 GPa, respectively.

4.
Pak J Med Sci ; 40(7): 1533-1538, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092044

RESUMO

Objective: To evaluate the clinical efficacy, safety and compliance of quality nursing intervention in the treatment of chronic heart failure combined with respiratory tract infections. Methods: This was a retrospective study. One hundred and twenty patients with chronic heart failure combined with respiratory tract infections were recruited at Baoding No.1 Central Hospital from June 2021 to March 2023 and randomly divided into the control group (n=60) and the experimental group (n=60). Patients in the control group were given regular specialist care on the basis of basic treatment, while those in the experimental group were given a quality care intervention model. The differences in clinical efficacy, improvement time of symptoms after treatment, etc. between the two groups were compared and analyzed. Results: The response rate of the experimental group was 88%, which was significantly higher than that of the control group (73%), with a statistically significant difference (P=0.04). The time of fever reduction, cough subsidence and lung rales disappearance in the experimental group were significantly shorter than those of the control group, with statistically significant differences (P<0.05). The incidence of nursing related adverse events in the experimental group was 8%, which was lower than that of 23% in the control group, with a statistically significant difference(P=0.03). Conclusion: Quality nursing intervention is an effective treatment for patients with chronic heart failure combined with respiratory infections, boasting a variety of benefits such as reduced nursing risk, improved quality of nursing, and increased patient compliance and satisfaction. It contributes to rapid symptom improvement and significant clinical efficacy.

5.
Phys Rev Lett ; 131(25): 256201, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181343

RESUMO

Moiré superlattices have emerged as an exciting condensed-matter quantum simulator for exploring the exotic physics of strong electronic correlations. Notable progress has been witnessed, but such correlated states are achievable usually at low temperatures. Here, we report evidence of possible room-temperature correlated electronic states and layer-hybridized SU(4) model simulator in AB-stacked MoS_{2} homobilayer moiré superlattices. Correlated insulating states at moiré band filling factors v=1, 2, 3 are unambiguously established in twisted bilayer MoS_{2}. Remarkably, the correlated electronic state at v=1 shows a giant correlated gap of ∼126 meV and may persist up to a record-high critical temperature over 285 K. The realization of a possible room-temperature correlated state with a large correlated gap in twisted bilayer MoS_{2} can be understood as the cooperation effects of the stacking-specific atomic reconstruction and the resonantly enhanced interlayer hybridization, which largely amplify the moiré superlattice effects on electronic correlations. Furthermore, extreme large nonlinear Hall responses up to room temperature are uncovered near correlated electronic states, demonstrating the quantum geometry of moiré flat conduction band.

6.
BMC Cancer ; 22(1): 216, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227236

RESUMO

OBJECTIVE: Neuroblastoma is a common extracranial solid tumor of childhood. Recently, multiple treatments have been practiced including Iodine-131-metaiodobenzylguanidine radiation (131I-MIBG) therapy. However, the outcomes of efficacy and safety vary greatly among different studies. The aim of this meta-analysis is to evaluate the efficacy and safety of 131I-MIBG in the treatment of neuroblastoma and to provide evidence and hints for clinical decision-making. METHODS: Medline, EMBASE database and the Cochrane Library were searched for relevant studies. Eligible studies utilizing 131I-MIBG in the treatment of neuroblastoma were included. The pooled outcomes (response rates, adverse events rates, survival rates) were calculated using either a random-effects model or a fixed-effects model considering of the heterogeneity. RESULTS: A total of 26 clinical trials including 883 patients were analyzed. The pooled rates of objective response, stable disease, progressive disease, and minor response of 131I-MIBG monotherapy were 39%, 31%, 22% and 15%, respectively. The pooled objective response rate of 131I-MIBG in combination with other therapies was 28%. The pooled 1-year survival and 5-year survival rates were 64% and 32%. The pooled occurrence rates of thrombocytopenia and neutropenia in MIBG monotherapy studies were 53% and 58%. In the studies of 131I-MIBG combined with other therapies, the pooled occurrence rates of thrombocytopenia and neutropenia were 79% and 78%. CONCLUSION: 131I-MIBG treatment alone or in combination of other therapies is effective on clinical outcomes in the treatment of neuroblastoma, individualized 131I-MIBG is recommended on a clinical basis.


Assuntos
3-Iodobenzilguanidina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Neuroblastoma/tratamento farmacológico , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Tumores Neuroendócrinos/tratamento farmacológico , Neutropenia/induzido quimicamente , Taxa de Sobrevida , Resultado do Tratamento
7.
J Org Chem ; 87(5): 3135-3144, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35029406

RESUMO

Herein, we developed palladium-catalyzed regio- and diastereoselective difluoromethylthiolation of acrylamides to form the Z-isomer product at room temperature. Using 8-aminoquinoline as a directing group, this protocol resulted in a high efficiency under mild reaction conditions and showed good functional group tolerances, which opens a novel synthetic methodology for accessing SCF2H-containing skeletons. Moreover, mechanistic studies were conducted to obtain insights into the reaction mechanism, and post-functionalization of the product reactions was performed.

8.
Bioorg Med Chem Lett ; 29(19): 126630, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31466809

RESUMO

FMS-like tyrosine kinase 3 (FLT3) was an important therapeutic target in acute myeloid leukemia (AML). We synthesized two series of 4-((6,7-dimethoxyquinoline-4-yl)oxy)aniline derivatives possessing the semicarbazide moiety and 2,2,2-trifluoro-N,N'-dimethylacetamide moiety as the linker. The cell proliferation assay in vitro against HL-60 and MV4-11 cell lines demonstrated that most series I compounds containing semicarbazide moiety had more potent than Cabozantinib. Furthermore, the enzyme assay showed that compound 12c and 12g were potent FLT3 inhibitors with IC50 values of 312 nM and 384 nM, respectively. Following that, molecular docking analysis was also performed to determine possible binding mode between FLT3 and the target compound.


Assuntos
Compostos de Anilina/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Apoptose , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Semicarbazidas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Bioorg Med Chem ; 26(9): 2621-2631, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29681484

RESUMO

The hepatitis C virus (HCV) NS5B polymerase is an attractive target for the development of novel and selective inhibitors of HCV replication. In this paper, the design, synthesis, and preliminary SAR studies of novel inhibitors of HCV NS5B polymerase based on the structure of tegobuvir have been described. The efforts to optimize the antiviral potency and reduce the treatment side effects with respect to genotype 1b resulted in the discovery of compound 3, which exhibited an EC50 of 1.163 nM and a CC50 >200 nM in a cell-based HCV replicon system assay. Additionally, testing for inhibition of the hERG channel showed a marked improvement over tegobuvir and the pharmacokinetic properties of compound 3 indicated that it was worthy of further investigation as a non-nucleoside inhibitor of HCV NS5B polymerase.


Assuntos
Antivirais/farmacologia , Imidazóis/farmacologia , Piridinas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacocinética , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacocinética , Masculino , Purinas/farmacologia , Piridazinas/farmacologia , Piridinas/síntese química , Piridinas/química , Piridinas/farmacocinética , Ratos Sprague-Dawley , Sofosbuvir/farmacologia , Relação Estrutura-Atividade
10.
J Am Chem Soc ; 139(7): 2630-2638, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28112933

RESUMO

Hybrid organic-inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb2+-need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb2+ ions into one monovalent M+ and one trivalent M3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

11.
Bioelectromagnetics ; 37(3): 152-162, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891468

RESUMO

Substantial evidence indicates that pulsed electromagnetic fields (PEMF) could accelerate fracture healing and enhance bone mass, whereas the unclear mechanism by which PEMF stimulation promotes osteogenesis limits its extensive clinical application. In the present study, effects and potential molecular signaling mechanisms of PEMF on in vitro osteoblasts were systematically investigated. Osteoblast-like MC3T3-E1 cells were exposed to PEMF burst (0.5, 1, 2, or 6 h/day) with 15.38 Hz at various intensities (5 Gs (0.5 mT), 10 Gs (1 mT), or 20 Gs (2 mT)) for 3 consecutive days. PEMF stimulation at 20 Gs (2 mT) for 2 h/day exhibited most prominent promotive effects on osteoblastic proliferation via Cell Counting kit-8 analyses. PEMF exposure induced well-organized cytoskeleton, and promoted formation of extracellular matrix mineralization nodules. Significantly increased proliferation-related gene expressions at the proliferation phase were observed after PEMF stimulation, including Ccnd 1 and Ccne 1. PEMF resulted in significantly increased gene and protein expressions of alkaline phosphatase and osteocalcin at the differentiation phase of osteoblasts rather than the proliferation phase via quantitative reverse transcription polymerase chain reaction and Western blotting analyses. Moreover, PEMF upregulated gene and protein expressions of collagen type 1, Runt-related transcription factor 2 and Wnt/ß-catenin signaling (Wnt1, Lrp6, and ß-catenin) at proliferation and differentiation phases. Together, our present findings highlight that PEMF stimulated osteoblastic functions through a Wnt/ß-catenin signaling-associated mechanism and, hence, regulates downstream osteogenesis-associated gene/protein expressions. Bioelectromagnetics. 37:152-162, 2016. © 2016 Wiley Periodicals, Inc.

12.
J Environ Manage ; 153: 33-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25646674

RESUMO

Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs). Results showed that the optimal HRT was two days for maximal removal of N and P from the septic tank effluent among the four CWs. At this HRT, the Z1, Z2, Z3 and Z4 CWs removed, respectively, 49.93, 58.50, 46.01 and 44.44% of TN as well as 87.82, 93.23, 95.97 and 91.30% of TP. Our study further revealed that the Z3 CW was the best design for overall removal of N and P from the septic tank effluent due to its hybrid flow directions with better oxygen supply inside the CW system.


Assuntos
Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Zingiberales/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo
13.
J Colloid Interface Sci ; 674: 361-369, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941930

RESUMO

To achieve high-performance Zn-air batteries (ZABs), the development of bifunctional air electrodes capable of efficiently mediating both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is imperative. In this study, we present an N-doped carbon hollow nanorod encapsulating a semi-coherent Co-Ni/Co6Mo6C heterojunction, tailored for reversible oxygen catalysis. This nanohybrid demonstrated an ORR half-wave potential of 0.907 V alongside an OER overpotential of η10 = 352 mV. When incorporated into ZABs, this catalyst exhibited extraordinary performance metrics, including a high-power density of 343.7 mW/cm2, a specific capacity of 681 mAh/gZn, and enhanced durability. The distinctive electric field within the heterojunction facilitated electron transfer across the semi-coherent interface during reversible oxygen electrocatalysis, enhancing the adsorption and release of active intermediates. Thus, this heightened ORR-OER catalytic efficiency culminated in superior ZABs performance. Our findings afford a pivotal design paradigm for the advancement of productive bifunctional catalysts within the field of energy conversion technologies.

14.
J Colloid Interface Sci ; 677(Pt A): 178-188, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39089126

RESUMO

Developing reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for achieving high-performance rechargeable Zn-air batteries (ZABs). This study introduced an nitrogen-doped carbon confined with a semi-coherent Fe(PO3)2-Co2P2O7 heterojunction for bifunctional oxygen electrocatalysis. This nanocomposite yielded an ORR half-wave potential of 0.908 V and an OER overpotential of 291 mV at 10 mA/cm2. ZABs incorporating this catalyst yielded impressive performance, including a peak power density of 203 mW/cm2, a specific capacity of 737 mAh/gZn, and promoted stability. Both experimental and theoretical simulations demonstrated that the unique electric field between Fe(PO3)2 and Co2P2O7 promoted efficient charge transport across the heterointerface. This interaction likely modulated the d-band center of the heterojunction, expedite the desorption of oxygen intermediates, thus improving oxygen catalysis and, consequently, ZAB performance. This work illustrates a significant design principle for creating efficient bifunctional catalysts in energy conversion technologies.

15.
ACS Appl Mater Interfaces ; 16(32): 42352-42362, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39080825

RESUMO

To enhance the efficiency of oxygen reduction reaction (ORR) catalysts, precise control over the adsorption/desorption energy barriers of oxygen intermediates at atomically dispersed Fe-N-C sites is essential yet challenging. Addressing this, we employed a pyrolysis approach using a nitrogen-containing polymer to fabricate Fe single-atom (SA) catalysts embedded in a pyridinic-N enriched carbon matrix. This synthesis strategy yielded Fe SAs that demonstrated a superior electrochemical ORR performance, evidenced by an impressive half-wave potential of 0.941 V and a high limiting current density of 5.72 mA/cm2. Moreover, when applied in homemade Zn-air batteries, this premier catalyst exhibited exceptional specific capacity (720 mAh/gZn), peak power density (253 mW/cm2), and notable long-term stability. Theoretical insights revealed that the increased pyridinic-N content in the catalyst facilitated efficient electron transfer from N atoms to the Fe active sites, thus fine-tuning the d-band center and effectively controlling the adsorption energy barrier of *OH species. These mechanisms synergistically improve the ORR performance. Crucially, this fabrication method shows promise for adaptation to other transition metal-based SAs, including Co, Ni, and Cu, potentially establishing a versatile synthesis route for developing atomically dispersed catalyst systems in future applications.

16.
Nat Commun ; 15(1): 1825, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418816

RESUMO

Monolayer molybdenum disulfide (MoS2), an emergent two-dimensional (2D) semiconductor, holds great promise for transcending the fundamental limits of silicon electronics and continue the downscaling of field-effect transistors. To realize its full potential and high-end applications, controlled synthesis of wafer-scale monolayer MoS2 single crystals on general commercial substrates is highly desired yet challenging. Here, we demonstrate the successful epitaxial growth of 2-inch single-crystal MoS2 monolayers on industry-compatible substrates of c-plane sapphire by engineering the formation of a specific interfacial reconstructed layer through the S/MoO3 precursor ratio control. The unidirectional alignment and seamless stitching of MoS2 domains across the entire wafer are demonstrated through cross-dimensional characterizations ranging from atomic- to centimeter-scale. The epitaxial monolayer MoS2 single crystal shows good wafer-scale uniformity and state-of-the-art quality, as evidenced from the ~100% phonon circular dichroism, exciton valley polarization of ~70%, room-temperature mobility of ~140 cm2v-1s-1, and on/off ratio of ~109. Our work provides a simple strategy to produce wafer-scale single-crystal 2D semiconductors on commercial insulator substrates, paving the way towards the further extension of Moore's law and industrial applications of 2D electronic circuits.

17.
J Colloid Interface Sci ; 630(Pt A): 688-697, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36279834

RESUMO

Developing transition metal electrocatalysts, especially single-atom catalysts (SACs), is significant. However, most of the synthesis procedures of SACs involve the formation of nanoparticles (NPs), and the produced NPs always play an influential role during electrocatalytic processing, so exploring the synergistic effects between metallic and isolated metal species is of great interest. Herein, we report a Zn/Fe-metal-organic framework (MOF)-derived Fe3C coupling FeNx catalyst constructed via coordination confinement pyrolysis effect successfully. Compared with the Pt/C catalyst and most precious metal-free catalysts, the optimized catalyst Fe3C-FeNx/NC-7 demonstrates superior oxygen reduction reaction (ORR) activity in 0.1 M KOH. The half-wave potential (E1/2) reaches up to 0.93 V with the limiting current density (jL) of 5.65 mA/cm2 at 5 mV/s scanning rate and 1600 rpm. The excellent performance originates from the synergistic effect of FeNx and Fe3C active units combined with wide-distributed nitrogen atoms. The Fe3C NPs further optimize the electronic structure and adsorption/desorption free energy of the catalyst. The assembled primary Zn-air battery (ZAB) displays a satisfying open-circuit potential of 1.53 V and an excellent specific capacity of 835 mA·h·g-1. The maximum power density achieves 283 mW/cm2, outclassing the commercial Pt/C-based ZAB. This result demonstrates the promising application prospect of the catalyst-cooperated metallic NPs with isolated single metal species.

18.
J Phys Chem Lett ; 14(10): 2455-2462, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36867121

RESUMO

A J-type dimer PMI-2, two perylene monoimides linked by butadiynylene bridger was prepared, and its excited-state dynamics was studied using ultrafast femtosecond transient absorption spectroscopy, along with steady-state spectroscopy and quantum chemical calculations. It is evidently demonstrated that the symmetry-breaking charge separation (SB-CS) process in PMI-2 is positively mediated by an excimer, which is mixed by localized Frenkel excitation (LE) and an interunit charge transfer (CT) state. Kinetic studies show that, with the polarity increasing of the solvent, the transformation of excimer from a mixture to the CT state (SB-CS) is accelerated, and the recombination time of the CT state is reduced obviously. Theoretical calculations indicate that these are due to PMI-2 obtaining more negative free energy (ΔGcs) and lower CT state energy levels in highly polar solvents. Our work suggests that the mixed excimer can be formed in a J-type dimer with suitable structure, in which the charge separation the process is sensitive to the solvent environment.

19.
Nanotechnology ; 23(38): 385705, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22948006

RESUMO

We present a surface-enhanced Raman scattering (SERS) substrate featured by large-scale homogeneously distributed Ag nanoparticles (Ag-NPs) with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO(2) film. The two-layered honeycomb-like TiO(2) film was achieved by a two-step anodization of pure Ti foil, with its upper layer consisting of hexagonally arranged shallow nano-bowls of 160 nm in diameter, and the lower layer consisting of arrays of about fifty vertically aligned sub-20 nm diameter nanopores. The shallow nano-bowls in the upper layer divide the whole TiO(2) film into regularly arranged arrays of uniform hexagonal nano-cells, leading to a similar distribution pattern for the ion-sputtered Ag-NPs in each nano-cell. The lower layer with sub-20 nm diameter nanopores prevents the aggregation of the sputtered Ag-NPs, so that the Ag-NPs can get much closer with gaps in the sub-10 nm range. Therefore, large-scale high-density and quasi-ordered sub-10 nm gaps between the adjacent Ag-NPs were achieved, which ensures homogeneously distributed 'hot spots' over a large area for the SERS effect. Moreover, the honeycomb-like structure can also facilitate the capture of target analyte molecules. As expected, the SERS substrate exhibits an excellent SERS effect with high sensitivity and reproducibility. As an example, the SERS substrate was utilized to detect polychlorinated biphenyls (PCBs, a kind of persistent organic pollutants as global environmental hazard) such as 3,3',4,4'-pentachlorobiphenyl (PCB-77) with concentrations down to 10(-9) M. Therefore the large-scale Ag-NPs with sub-10 nm gaps assembled on the two-layered honeycomb-like TiO (2) film have potentials in SERS-based rapid trace detection of PCBs.


Assuntos
Membranas Artificiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Prata/química , Análise Espectral Raman/métodos , Titânio/química , Luz , Teste de Materiais , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
20.
Nano Lett ; 11(4): 1704-9, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21417314

RESUMO

We report on the controlled growth of germanium (Ge) nanostructures in the form of both nanowire (NW) and nanotube (NT) with ultrahigh aspect ratios and variable diameters. The nanostructures are grown inside a porous anodic aluminum oxide (AAO) template by low-temperature chemical vapor deposition (CVD) assisted by an electrodeposited metal nanorod catalyst. Depending on the choice of catalytic metals (Au, Ni, Cu, Co) and germane (GeH(4)) concentration during CVD, either Ge NWs or NTs can be synthesized at low growth temperatures (310-370 °C). Furthermore, Ge NWs and NTs with two or more branches can be grown from the same stem while using AAO with branched channels as templates. Transmission electron microscopy studies show that NWs are single crystalline and that branches grow epitaxially from the stem of NWs with a crystalline direction independent of diameter. As-grown NTs are amorphous but can crystallize via postannealing at 400 °C in Ar/H(2) atmosphere, with a wall thickness controllable between 6 and 18 nm in the CVD process. The yield and quality of the NTs are critically dependent on the choice of the catalyst, where Ni appears the best choice for Ge NT growth among Ni, Cu, Co, and Au. The synthesis of structurally uniform and morphologically versatile Ge nanostructures may open up new opportunities for integrated Ge-nanostructure-based nanocircuits, nanodevices, and nanosystems.


Assuntos
Cristalização/métodos , Germânio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa