RESUMO
A satisfactory material with high adsorption capacity is urgently needed to solve the serious problem of environment and human health caused by lead pollution. Herein, hydrogen-substituted graphdiyne (HsGDY) was successfully fabricated and employed to remove lead ions from sewage and lead-containing blood. The as-prepared HsGDY exhibits the highest adsorption capacity of lead among the reported materials with a maximum adsorption capacity of 2,390 mg/g, i.e., ~five times larger than that of graphdiyne (GDY). The distinguished hexagonal hole and stack mode of HsGDY allows the adsorption of more lead via its inner side adsorption mode in one single unit space. In addition, the Pb 6s and H 1s hybridization promotes the strong bonding of lead atom adsorbed at the acetylenic bond of HsGDY, contributing to the high adsorption capacity. HsGDY can be easily regenerated by acid treatment and showed excellent regeneration ability and reliability after six adsorption-regeneration cycles. Langmuir isotherm model, pseudo second order, and density functional theory (DFT) demonstrated that the lead adsorption process in HsGDY is monolayer chemisorption. Furthermore, the HsGDY-based portable filter can handle 1,000 µg/L lead-containing aqueous solution up to 1,000 mL, which is nearly 6.67 times that of commercial activated carbon particles. And, the HsGDY shows good biocompatibility and excellent removal efficiency to 100 µg/L blood lead, which is 1.7 times higher than that of GDY. These findings suggest that HsGDY could be a promising adsorbent for practical lead and other heavy metal removal.
RESUMO
Erianin, crepidatin, and chrysotobibenzyl are typical medicinal polymethoxylated bibenzyls (PMBs) that are commercially produced in Dendrobium species. PMBs' chemo-diversity is mediated by the manifold combinations of O-methylation and hydroxylation in a definite order, which remains unsolved. To unequivocally elucidate the methylation mechanism of PMBs, 15 possible intermediates in the biosynthetic pathway of PMBs were chemically synthesized. DcOMT1-5 were highly expressed in tissues where PMBs were biosynthesized, and their expression patterns were well-correlated with the accumulation profiles of PMBs. Moreover, cell-free orthogonal tests based on the synthesized intermediates further confirmed that DcOMT1-5 exhibited distinct substrate preferences and displayed hydroxyl-group regiospecificity during the sequential methylation process. The stepwise methylation of PMBs was discovered from SAM to dihydro-piceatannol (P) in the following order: P â 3-MeP â 4-OH-3-MeP â 4-OH-3,5-diMeP â 3,3'(4'),5-triMeP â 3,4,4',5-tetraMeP (erianin) or 3,3',4,5-tetraMeP (crepidatin) â 3,3',4,4',5-pentaMeP (chrysotobibenzyl). Furthermore, the regioselectivities of DcOMTs were investigated by ligand docking analyses which corresponded precisely with the catalytic activities. In summary, the findings shed light on the sequential catalytic mechanisms of PMB biosynthesis and provide a comprehensive PMB biosynthetic network in D. catenatum. The knowledge gained from this study may also contribute to the development of plant-based medicinal applications and the production of high-value PMBs.
Assuntos
Bibenzilas , Dendrobium , Metiltransferases , Dendrobium/metabolismo , Dendrobium/enzimologia , Dendrobium/genética , Bibenzilas/metabolismo , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Especificidade por SubstratoRESUMO
Nitroalkanes serve as essential intermediates in the synthesis of pharmaceuticals, agrochemicals, and functional materials. To date, nitroalkanes are mainly prepared from homogeneous catalysts such as noble transition metal catalysts with poor recyclability. Herein, we propose a metal-organic framework-frustrated Lewis pair (MOF-FLP) heterogeneous catalyst for selectively reducing nitroolefins to nitroalkanes under moderate reaction conditions. MOF enrichment effect can significantly improve the catalytic efficiency compared to homogeneous FLP catalysts. Benefiting from the strong interaction between FLP and MOF, the MOF-FLP catalyst exhibits outstanding recyclability. This work not only provides a convenient route for nitroalkane synthesis but also showcases the potential of porous heterogeneous FLP catalysts, offering inspiration for future catalytic design strategies.
RESUMO
Platensilin, platensimycin, and platencin are potent inhibitors of ß-ketoacyl-acyl carrier protein synthase (FabF) in the bacterial and mammalian fatty acid synthesis system, presenting promising drug leads for both antibacterial and antidiabetic therapies. Herein, a bioinspired skeleton reconstruction approach is reported, which enables the unified synthesis of these three natural FabF inhibitors and their skeletally diverse analogs, all stemming from a common ent-pimarane core. The synthesis features a diastereoselective biocatalytic reduction and an intermolecular Diels-Alder reaction to prepare the common ent-pimarane core. From this intermediate, stereoselective Mn-catalyzed hydrogen atom-transfer hydrogenation and subsequent Cu-catalyzed carbenoid C-H insertion afford platensilin. Furthermore, the intramolecular Diels-Alder reaction succeeded by regioselective ring opening of the newly formed cyclopropane enables the construction of the bicyclo[3.2.1]-octane and bicyclo[2.2.2]-octane ring systems of platensimycin and platencin, respectively. This skeletal reconstruction approach of the ent-pimarane core facilitates the preparation of analogs bearing different polycyclic scaffolds. Among these analogs, the previously unexplored cyclopropyl analog 47 exhibits improved antibacterial activity (MIC80 = 0.0625 µg/mL) against S. aureus compared to platensimycin.
Assuntos
Adamantano , Aminobenzoatos , Aminofenóis , Anilidas , Compostos Policíclicos , Aminofenóis/química , Aminofenóis/farmacologia , Aminofenóis/síntese química , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Compostos Policíclicos/síntese química , Adamantano/química , Adamantano/farmacologia , Adamantano/síntese química , Adamantano/análogos & derivados , Anilidas/farmacologia , Anilidas/química , Anilidas/síntese química , Aminobenzoatos/farmacologia , Aminobenzoatos/química , Aminobenzoatos/síntese química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Estrutura Molecular , Reação de Cicloadição , Testes de Sensibilidade Microbiana , Estereoisomerismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/químicaRESUMO
BACKGROUND: Cold is an important environmental limiting factor affecting plant yield and quality. Capsicum (chili pepper), a tropical and subtropical vegetable crop, is extremely sensitive to cold. Although H2S is an important signaling regulator in the responses of plant growth and development to abiotic stress, few studies have examined its effects on cold-sensitive capsicum varieties. Through biotechnology methods to enhance the cold resistance of peppers, to provide some reference for pepper breeding, investigated molecular regulation by H2S of responses to cold stress in cold-sensitive capsicum plants, via physiological and transcriptomic analyses. RESULTS: In capsicum seedlings, exogenous H2S enhanced relative electrical conductivity (REC) and levels of malondialdehyde (MDA) under cold stress, maintained membrane integrity, increased the activity of enzymatic and non-enzymatic antioxidants, balanced reactive oxygen species levels (O2·- and H2O2), and improved photosynthesis, mitigating the damage caused by cold. In addition, 416 differentially expressed genes (DEGs) were involved in the response to cold stress after H2S treatment. These DEGs were mainly enriched in the ascorbate-glutathione and starch-sucrose metabolic pathways and plant hormone signal-transduction pathways. Exogenous H2S altered the expression of key enzyme-encoding genes such as GST, APX, and MDHAR in the ascorbate-glutathione metabolism pathway, as well as that of regulatory genes for stimulatory hormones (auxin, cytokinins, and gibberellins) and inhibitory hormones (including jasmonate and salicylic acid) in the plant hormone signal-transduction pathway, helping to maintain the energy supply and intracellular metabolic stability under cold stress. CONCLUSIONS: These findings reveal that exogenous H2S improves cold tolerance in cold-sensitive capsicum plants, elucidating the molecular mechanisms underlying its responses to cold stress. This study provides a theoretical basis for exploring and improving cold tolerance in capsicum plants.
Assuntos
Antioxidantes , Capsicum , Regulação da Expressão Gênica de Plantas , Glucose , Sulfeto de Hidrogênio , Capsicum/genética , Capsicum/fisiologia , Capsicum/metabolismo , Antioxidantes/metabolismo , Sulfeto de Hidrogênio/metabolismo , Glucose/metabolismo , Resposta ao Choque Frio/genética , Temperatura Baixa , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Plântula/crescimento & desenvolvimento , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
The synthesis of stable polynitrogen compounds with high-energy density has long been a major challenge. The cyclo-pentazolate anion (cyclo-N5 -) is successfully converted into aromatic and structurally symmetric bipentazole (N10) via electrochemical synthesis using highly conductive multi-walled carbon nanotubes (MWCNTs) as the substrate and sodium pentazolate hydrate ([Na(H2O)(N5)]·2H2O) as the raw material. Attenuated total refraction Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and density functional theory calculations confirmed the structure and homogeneous distribution of N10 in the sidewalls of the MWCNTs (named MWCNT-N10-n m). The MWCNT-N10-2.0 m is further used as a catalyst for electrochemical oxygen reduction to synthesize hydrogen peroxide from oxygen with a two-electron selectivity of up to 95%.
RESUMO
Switchable spontaneous polarization is the vital property of ferroelectrics, which leads to other key physical properties such as piezoelectricity, pyroelectricity, and nonlinear optical effects, etc. Recently, organic-inorganic hybrid perovskites with 2D layered structure have become an emerging branch of ferroelectric materials. However, most of the 2D hybrid ferroelectrics own relatively low polarizations (<15 µC cm-2 ). Here, a strategy to enhance the polarization of these hybrid perovskites by using ortho-, meta-, para-halogen substitution is developed. Based on (benzylammonium)2 PbCl4 (BZACL), the para-chlorine substituted (4-chlorobenzylammonium)2 PbCl4 (4-CBZACL) ferroelectric semiconductor shows a large spontaneous polarization (23.3 µC cm-2 ), which is 79% larger than the polarization of BZACL. This large enhancement of polarization is successfully explained via ab initio calculations. The study provides a convenient and efficient strategy to promote the ferroelectric property in the hybrid perovskite family.
RESUMO
Soybean is a short-day plant that typically flowers earlier when exposed to short-day conditions. However, the identification of genes associated with earlier flowering time but without a yield penalty is rare. In this study, we conducted genome-wide association studies (GWAS) using two re-sequencing datasets that included 113 wild soybeans (G. soja) and 1192 cultivated soybeans (G. max), respectively, and simultaneously identified a candidate flowering gene, qFT13-3, which encodes a protein homologous to the pseudo-response regulator (PRR) transcription factor. We identified four major haplotypes of qFT13-3 in the natural population, with haplotype H4 (qFT13-3H4) being lost during domestication, while qFT13-3H1 underwent natural and artificial selection, increasing in proportion from 4.5% in G. soja to 43.8% in landrace and to 81.9% in improve cultivars. Notably, most cultivars harbouring qFT13-3H1 were located in high-latitude regions. Knockout of qFT13-3 accelerated flowering and maturity time under long-day conditions, indicating that qFT13-3 functions as a flowering inhibitor. Our results also showed that qFT13-3 directly downregulates the expression of GmELF3b-2 which is a component of the circadian clock evening complex. Field trials revealed that the qft13-3 mutants shorten the maturity period by 11 days without a concomitant penalty on yield. Collectively, qFT13-3 can be utilized for the breeding of high-yield cultivars with a short maturity time suitable for high latitudes.
Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Glycine max/genética , Melhoramento Vegetal , Haplótipos/genética , Fotoperíodo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genéticaRESUMO
Chronic obstructive pulmonary disease(COPD) is a gradually worsening and fatal heterogeneous lung disease characterized by airflow limitation and increasingly decline in lung function. Currently, it is one of the leading causes of death worldwide. The consistent feature of COPD is airway inflammation. Several inflammatory factors are known to be involved in COPD pathogenesis; however, anti-inflammatory therapy is not the first-line treatment for COPD. Although bronchodilators, corticosteroids and roflumilast could improve airflow and control symptoms, they could not reverse the disease. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway plays an important novel role in the immune system and has been confirmed to be a key mediator of inflammation during infection, cellular stress, and tissue damage. Recent studies have emphasized that abnormal activation of cGAS-STING contributes to COPD, providing a direction for new treatments that we urgently need to develop. Here, we focused on the cGAS-STING pathway, providing insight into its molecular mechanism and summarizing the current knowledge on the role of the cGAS-STING pathway in COPD. Moreover, we explored antagonists of cGAS and STING to identify potential therapeutic strategies for COPD that target the cGAS-STING pathway.
Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Doença Pulmonar Obstrutiva Crônica , Transdução de Sinais , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Humanos , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Terapia de Alvo Molecular/métodosRESUMO
BACKGROUND: There is a U-shaped relationship between dietary selenium (Se) ingestion and optimal sperm quality. OBJECTIVES: This study aimed to investigate the optimal dietary dose and forms of Se for sperm quality of breeder roosters and the relevant mechanisms. METHODS: In experiment 1, 18-wk-old Jingbai laying breeder roosters were fed a Se-deficient base diet (BD, 0.06 mg Se/kg), or the BD + 0.1, 0.2, 0.3, 0.4, 0.5, or 1.0 mg Se/kg for 9 wk. In experiment 2, the roosters were fed the BD or the BD + sodium selenite (SeNa), seleno-yeast (SeY), or Se-nanoparticles (SeNPs) at 0.2 mg Se/kg for 9 wk. RESULTS: In experiment 1, added dietary 0.2 and 0.3 mg Se/kg led to higher sperm motility and lower sperm mortality than the other groups at weeks 5, 7, and/or 9. Furthermore, added dietary 0.2-0.4 mg Se/kg produced better testicular histology and/or lower testicular 8-hydroxy-deoxyguanosine than the other groups. Moreover, integrated testicular transcriptomic and cecal microbiomic analysis revealed that inflammation, cell proliferation, and apoptosis-related genes and bacteria were dysregulated by Se deficiency or excess. In experiment 2, compared with SeNa, SeNPs slightly increased sperm motility throughout the experiment, whereas SeNPs slightly reduced sperm mortality compared with SeY at week 9. Both SeY and SeNPs decreased malondialdehyde in the serum than those of SeNa, and SeNPs led to higher glutathione peroxidase (GPX) and thioredoxin reductase activities and GPX1 and B-cell lymphoma 2 protein concentrations in the testis compared with SeY and SeNa. CONCLUSIONS: The optimal dietary Se dose for reproductive health of breeder roosters is 0.25-0.35 mg Se/kg, and SeNPs displayed better effects on reproductive health than SeNa and SeY in laying breeder roosters. The optimal doses and forms of Se maintain reproductive health of roosters associated with regulation intestinal microbiota homeostasis and/or testicular redox balance, inflammation, cell proliferation, and apoptosis.
Assuntos
Microbioma Gastrointestinal , Selênio , Masculino , Animais , Testículo/metabolismo , Selênio/metabolismo , Galinhas/metabolismo , Saúde Reprodutiva , Motilidade dos Espermatozoides , Sementes , Oxirredução , Dieta , Inflamação/metabolismo , Apoptose , Proliferação de Células , Suplementos NutricionaisRESUMO
Fluorescent proteins (FPs) have been widely used to investigate cellular and molecular interactions and trace biological events in many applications. Some of the FPs have been demonstrated to cause undesirable cellular damage by light-induced ROS production in vivo or in vitro. However, it remains unknown if one of the most popular FPs, tdTomato, has similar effects in neuronal cells. In this study, we discovered that tdTomato expression led to unexpected retinal dysfunction and ultrastructural defects in the transgenic mouse retina. The retinal dysfunction mainly manifested in the reduced photopic electroretinogram (ERG) responses and decreased contrast sensitivity in visual acuity, caused by mitochondrial damages characterized with cellular redistribution, morphological modifications and molecular profiling alterations. Taken together, our findings for the first time demonstrated the retinal dysfunction and ultrastructural defects in the retinas of tdTomato-transgenic mice, calling for a more careful design and interpretation of experiments involved in FPs.
Assuntos
Eletrorretinografia , Camundongos Transgênicos , Retina , Animais , Camundongos , Retina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Endogâmicos C57BL , Acuidade Visual/fisiologia , Mitocôndrias/metabolismo , Proteína Vermelha FluorescenteRESUMO
Organic-inorganic hybrid perovskites (OIHPs) have received particular attention due to their characteristic structural tunability and flexibility. These features make OIHPs behave with excellent modifications on macroscopic properties, such as ferroicity or semiconductor performances, etc. Herein, we report two 2D hybrid stibium-based halide perovskite (C3H7N)3Sb2X9 (X = Br, 1; Cl, 2) ferroelastic semiconductor possessing dual switching properties of dielectric and second harmonic generation (SHG). Notably, these two hybrids exhibit halogen-regulated ferroelasticity and semiconductor properties. There is a significant difference in Curie temperature (Tc) and X-ray radiation detection sensitivity (S), i.e., the ΔTc and ΔS are 38 K and 87 µC Gyair-1 cm-2, respectively. Meanwhile, crystals 1 and 2 do not show dark current drift in cyclic measurements of different radiation doses with stable switching ratios of 30 and 10, separately. Meanwhile, these results were proven by scientific experimental results and density functional theory (DFT) calculations. Our work presents a facile and practical method to regulate macroproperties on the molecular level, providing a new vision to develop hybrid perovskite ferroic-photoelectric materials.
RESUMO
A straightforward copper-catalyzed deborodeuteration of arylboronic acids and borates was achieved, employing the cost-effective deuterium source D2O. This protocol demonstrates wide substrate applicability, exceptional deuterium incorporation efficiency, and favorable tolerance for various functional groups. Therefore, this approach offers a mild option for further applications in valuable deuterium molecule synthesis.
RESUMO
Addressing the challenge of constructing multi-substituted dihydropyrans, we present an efficient synthesis method for oxygen-containing heterocycles. Using thiones and metal carbenes, we employed xanthate and triazole to intramolecularly synthesize dihydropyran or dihydrofuran compounds. 1,2-Hydride migration was inhibited, and thiodihydropyrans were obtained in excellent yields. A mechanism proceeding through a Rh-carbene intermediate is proposed for the multi-substituted dihydropyrans synthesis.
RESUMO
BACKGROUND: In lower vertebrates like fish, the inner ear and lateral line hair cells (HCs) can regenerate after being damaged by proliferation/differentiation of supporting cells (SCs). However, the HCs of mouse cochlear could only regenerate within one to two weeks after birth but not for adults. METHODS AND RESULTS: To better understand the molecular foundations, we collected several public single-cell RNA sequencing (scRNAseq) data of mouse cochleae from E14 to P33 and extracted the prosensory and supporting cells specifically. Gene Set Enrichment Analysis (GSEA) results revealed a down-regulation of genes in Notch signaling pathway during postnatal stages (P7 and P33). We also identified 107 time-course co-expression genes correlated with developmental stage and predicated that EZH2 and KLF15 may be the key transcriptional regulators for these genes. Expressions of candidate target genes of EZH2 and KLF15 were also found in supporting cells of the auditory epithelia in chick and the neuromasts in zebrafish. Furthermore, inhibiting EZH2 suppressed regeneration of hair cells in zebrafish neuromasts and altered expressions of some developmental stage correlated genes. CONCLUSIONS: Our results extended the understanding for molecular basis of hair cell regeneration ability and revealed the potential role of Ezh2 in it.
Assuntos
Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Proliferação de Células/genética , Células Ciliadas Auditivas/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Mylnudones A-G (1-7), unprecedented 1,10-seco-aromadendrane-benzoquinone-type heterodimers, and a highly rearranged aromadendrane-type sesquiterpenoid (8), along with four known analogs (9-12), were isolated from the liverwort Mylia nuda. Compounds 1-6 and 7, bearing tricyclo[6.2.1.02,7] undecane and tricyclo[5.3.1.02,6] undecane backbones, likely formed via a Diels-Alder reaction and radical cyclization, respectively. Their structures were determined by spectroscopic analysis, computational calculation, and single-crystal X-ray diffraction analysis. Dimeric compounds displayed cytoprotective effects against glutamic acid-induced neurological deficits.
Assuntos
Alcanos , Hepatófitas , Sesquiterpenos de Guaiano , Sesquiterpenos , Hepatófitas/química , Estrutura Molecular , Sesquiterpenos/farmacologia , Sesquiterpenos/química , ChinaRESUMO
BACKGROUND AND OBJECTIVES: This study aimed to assess the associations of maternal iron status and placental iron transport proteins expression with the risk of pre-eclampsia (PE) in Chinese pregnant women. METHODS AND STUDY DESIGN: A total of 94 subjects with PE and 112 healthy pregnant women were enrolled. Fasting blood samples were collected to detect maternal iron status. The placenta samples were collected at delivery to detect the mRNA and protein expression of divalent metal transporter 1 (DMT1) and ferroportin-1 (FPN1). Logistic analysis was used to explore the associations of maternal iron status with PE risk. The associations of placental iron transport proteins with maternal iron status were explored. RESULTS: After adjusting for covariates, dietary total iron, non-heme iron intake and serum hepcidin were negatively associated with PE, with adjusted ORs (95%CIs) were 0.40 (0.17, 0.91), 0.42 (0.18, 0.94) and 0.02 (0.002, 0.13) for the highest versus lowest tertile, respectively. For the highest tertile versus lowest tertile, serum iron (4.08 (1.58, 10.57)) and ferritin (5.61 (2.36, 13.31)) were positively associated with PE. The mRNA expressions and protein levels of DMT1 and FPN1 in placenta were up-regulated in the PE group (p < 0.05). The mRNA expressions of DMT1 and FPN1 in placenta showed a negative correlation with the serum hepcidin (r = -0.71, p < 0.001; r = -0.49, p < 0.05). CONCLUSIONS: In conclusion, the maternal iron status were closely associated with PE risk, placental DMT1 and FPN1 were upregulated in PE which may be a promising target for the prevention of PE.
Assuntos
Proteínas de Transporte de Cátions , Ferro , Placenta , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/sangue , Estudos de Casos e Controles , Adulto , Ferro/sangue , Ferro/metabolismo , Placenta/metabolismo , Proteínas de Transporte de Cátions/genética , Hepcidinas/sangue , Fatores de Risco , China/epidemiologia , Estado NutricionalRESUMO
Quantum physics phenomena, entanglement and coherence, are crucial for quantum information protocols, but understanding these in systems with more than two parts is challenging due to increasing complexity. The W state, a multipartite entangled state, is notable for its robustness and benefits in quantum communication. Here, we generate eight-mode on-demand single-photon W states, using nanowire quantum dots and a silicon nitride photonic chip. We demonstrate a reliable and scalable technique for reconstructing the W state in photonic circuits using Fourier and real-space imaging, supported by the Gerchberg-Saxton phase retrieval algorithm. Additionally, we utilize an entanglement witness to distinguish between mixed and entangled states, thereby affirming the entangled nature of our generated state. The study provides a new imaging approach of assessing multipartite entanglement in W states, paving the way for further progress in image processing and Fourier-space analysis techniques for complex quantum systems.
RESUMO
AIM: To evaluate the mediating roles of occupational resilience and the moderationg role of perceived organizational support in the relationship between career calling and nurse burnout. BACKGROUND: Burnout is a frequent and serious problem in the field of nursing, and it poses a serious threat to both nurses' health and patient safety. Although many studies have described the links between burnout, career calling, and occupational resilience, little is known about the actual mechanisms between career calling and nurse burnout. METHODS: A cross-sectional study of 615 nurses in China was conducted using a convenience sampling method. The data were analyzed using descriptive statistics and Pearson correlation analysis. Hypotheses were tested using structural equation models and bootstrapping methods. STROBE guidelines were followed. RESULTS: Career calling was found to be negatively associated with nurse burnout, and occupational resilience mediated the relationship between career calling and burnout. Additionally, perceived organizational support was found to play a moderating role in the relationship between occupational resilience and burnout. CONCLUSION: Career calling can reduce burnout by increasing nurses' levels of occupational resilience, and perceived organizational support moderates this mechanism. Hence, policies focused on encouraging and sustaining career calling should be provided by nurse managers in order to enhance stress resistance and reduce burnout.
RESUMO
Out-of-plane polarization is a highly desired property of two-dimensional (2D) ferroelectrics for application in vertical sandwich-type photoferroelectric devices, especially in ultrathin ferroelectronic devices. Nevertheless, despite great advances that have been made in recent years, out-of-plane polarization remains unrealized in the 2D hybrid double perovskite ferroelectric family. Here, from our previous work 2D hybrid double perovskite HQERN ((S3HQ)4EuRb(NO3)8, S3HQ=S-3-hydroxylquinuclidinium), we designed a molecular strategy of F-substitution on organic component to successfully obtain FQERN ((S3FQ)4EuRb(NO3)8, S3FQ=S-3-fluoroquinuclidinium) showing circularly polarized luminescence (CPL) response. Remarkably, compared to the monopolar axis ferroelectric HQERN, FQERN not only shows multiferroicity with the coexistence of multipolar axis ferroelectricity and ferroelasticity but also realizes out-of-plane ferroelectric polarization and a dramatic enhancement of Curie temperature of 94â K. This is mainly due to the introduction of F-substituted organic cations, which leads to a change in orientation and a reduction in crystal lattice void occupancy. Our study demonstrates that F-substitution is an efficient strategy to realize and optimize ferroelectric functional characteristics, giving more possibility of 2D ferroelectric materials for applications in micro-nano optoelectronic devices.