Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 437-445, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150621

RESUMO

Damage of reactive oxygen species to various molecules such as DNA has been related to many chronic and degenerative human diseases, aging, and even cancer. 8-Oxo-7,8-dihydroguanine (OG), the most significant oxidation product of guanine (G), has become a biomarker of oxidative stress as well as gene regulation. The positive effect of OG in activating transcription and the negative effect in inducing mutation are a double-edged sword; thus, site-specific quantification is helpful to quickly reveal the functional mechanism of OG at hotspots. Due to the possible biological effects of OG at extremely low abundance in the genome, the monitoring of OG is vulnerable to signal interference from a large amount of G. Herein, based on rolling circle amplification-induced G-triplex formation and Thioflavin T fluorescence enhancement, an ultrasensitive strategy for locus-specific OG quantification was constructed. Owing to the difference in the hydrogen-bonding pattern between OG and G, the nonspecific background signal of G sites was completely suppressed through enzymatic ligation of DNA probes and the triggered specificity of rolling circle amplification. After the signal amplification strategy was optimized, the high detection sensitivity of OG sites with an ultralow detection limit of 0.18 amol was achieved. Under the interference of G sites, as little as 0.05% of OG-containing DNA was first distinguished. This method was further used for qualitative and quantitative monitoring of locus-specific OG in genomic DNA under oxidative stress and identification of key OG sites with biological function.


Assuntos
DNA , Guanina , Humanos , DNA/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio , Técnicas de Amplificação de Ácido Nucleico
2.
Anal Chem ; 96(21): 8458-8466, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710075

RESUMO

G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.


Assuntos
Benzotiazóis , DNA , Corantes Fluorescentes , Uracila-DNA Glicosidase , Benzotiazóis/química , Benzotiazóis/metabolismo , Corantes Fluorescentes/química , DNA/química , DNA/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila-DNA Glicosidase/química , Espectrometria de Fluorescência , Fluorescência , Técnicas Biossensoriais/métodos , Dicroísmo Circular , Humanos
3.
Anal Chem ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625376

RESUMO

Succination is a nonenzymatic and irreversible post-translational modification (PTM) with important biological significance, yielding S-(2-succino) cysteine (2SC) residue. This PTM is low in abundance and often requires a large amount of protein samples for 2SC quantification. In this work, an efficient quantification method based on ethanol/acetyl chloride chemical derivatization was developed. The three carboxyl groups of 2SC were all esterified to increase hydrophobicity, greatly improving its ionization efficiency. The sensitivity was increased by 112 times; the limit of detection was reduced to 0.885 fmol, and the protein usage was reduced by at least 10 times. The established method was used to detect the overall concentration of 2SC in fumarate accumulation cells quantitatively.

4.
Analyst ; 148(7): 1500-1506, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36883656

RESUMO

Nucleosides have been found to suffer in-source fragmentation (ISF) in electrospray ionization mass spectrometry, which leads to reduced sensitivity and ambiguous identification. In this work, a combination of theoretical calculations and nuclear magnetic resonance analysis revealed the key role of protonation at N3 near the glycosidic bond during ISF. Therefore, an ultrasensitive liquid chromatography-tandem mass spectrometry system for 5-formylcytosine detection was developed with 300 fold signal enhancement. Also, we established a MS1-only platform for nucleoside profiling and successfully identified sixteen nucleosides in the total RNA of MCF-7 cells. Taking ISF into account, we can realize analysis with higher sensitivity and less ambiguity, not only for nucleosides, but for other molecules with similar protonation and fragmentation behaviors.


Assuntos
Nucleosídeos , Espectrometria de Massas por Ionização por Electrospray , Nucleosídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida
5.
Anal Chem ; 94(22): 8066-8074, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35613360

RESUMO

Oxidative DNA damage is tightly linked to the development of multiple age-related diseases. The prominent oxidation product is 8-oxo-7,8-dihydroguanine (OG), which has been proved to be an important epigenetic-like biomarker. Quantification of the locus-specific OG frequency includes quantitative and locating information, which is of great significance for exploring the functional roles of OG in disease induction and gene regulation. Herein, an ultrasensitive quantification of OG at single-base resolution was established using real-time fluorescence quantitative polymerase chain reaction as an amplification tool. Based on the coding property of Bsu DNA polymerase that incorporates adenine on the opposite site of OG and the selectivity of the ligase for perfectly matched sequences, the difference between OG and G on the sequence could be enlarged. Well-performed Taq DNA ligase was selected out, and as low as 46.2 zmol of target DNA with an OG site and an OG frequency of 5% could be detected. G contents on a specific site were also detectable based on the similar principle, thus the OG frequency of this locus could be accurately determined by a standard addition method. This strategy was successfully applied to the evaluation of locus-specific OG in both model DNA and genomic DNA from human cervical carcinoma cell lines under multiple oxidative stress, showing the potential for functional research and dynamic monitoring of critical OG sites.


Assuntos
Reparo do DNA , Guanina , DNA/genética , Dano ao DNA , Guanina/análogos & derivados , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa