Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Anal Chem ; 95(33): 12313-12320, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37565815

RESUMO

The detection of formic acid vapor in the usage environment is extremely important for human health and safety. The utilization of metal-organic frameworks (MOFs) for the detection of gaseous molecules is an attractive strategy. However, the rational design and construction of MOF-based gas sensors with high sensitivity and mechanical stability remain a significant challenge. In this study, a simple approach is reported to fabricate colorimetric aerogel sensors assembled from MOF particles via ice template-assisted methods. As the aerogel sensor with staggered lamellae structures significantly provides a high air-volume intake of flowing gas, it generates a sufficient probability of contact reactions for highly mobile target molecules. Additionally, it enhances the mechanical stability by providing stress resistance between the staggered lamellae structures. Compared to conventional film sensors for the detection of formic acid molecules, aerogel sensors exhibit an 8-fold lower limit of detection, 15-fold better sensitivity at low concentrations, 34-fold faster response time, and higher stability. This approach shows great potential for rapid and real-time detection of target molecules as well as superior performance in the structural construction of various gas-sensitive materials.

2.
J Am Chem Soc ; 144(38): 17533-17539, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36000980

RESUMO

The interfacial mass transfer rate of a target has a significant impact on the sensing performance. The surface reaction forms a concentration gradient perpendicular to the surface, wherein a slow mass transfer process decreases the interfacial reaction rate. In this work, we self-assembled gold nanoparticles (AuNPs) in the gap of a SiO2 opal array to form a AuNP-bridge array. The diffusion paths of vertical permeability and a microvortex effect provided by the AuNP-bridge array synergistically improved the target mass transfer efficiency. As a proof of concept, we used DNA hybridization efficiency as a research model, and the surface-enhanced Raman spectroscopy (SERS) signal acted as a readout index. The experimental verification and theoretical simulation show that the AuNP-bridge array exhibited rapid mass transfer and high sensitivity. The DNA hybridization efficiency of the AuNP-bridge array was 15-fold higher than that of the AuNP-planar array. We believe that AuNP-bridge arrays can be potentially applied for screening drug candidates, genetic variations, and disease biomarkers.


Assuntos
Ouro , Nanopartículas Metálicas , Biomarcadores , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício , Análise Espectral Raman/métodos
3.
Acc Chem Res ; 54(1): 35-45, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33044822

RESUMO

The properties and performance of solid nanomaterials in heterogeneous chemical reactions are significantly influenced by the interface between the nanomaterial and environment. Oriented tailoring of interfacial dynamics, that is, modifying the shared boundary for mass and energy exchange has become a common goal for scientists. Although researchers have designed and constructed an abundance of nanomaterials with excellent performances for the tailoring of reaction dynamics, a complete understanding of the mechanism of nanomaterial-environment interfacial interaction still remains elusive. To predictively understand the nanomaterial-environment relationship over a wide range of time scale, a deep and dynamic insight is required urgently. In this Account, our recent works including advances in the design and construction of nanoassembled interfaces and understanding the dynamic interaction mechanisms between different combinations of nanoparticle (NP) assembly environment interfaces for tailoring the reaction dynamics.NP assemblies with well-defined structures and compositions are inherently suitable for replacing bulk-type nanomaterials for the research on interfaces. We primarily introduced two most relevant nanoassembled surfaces that were fabricated in our laboratory, namely, ordered self-assembly interface and animate nanoassembled interface. The disordered nanoparticles can be arranged into an ordered superlattice based on the self-assembly method and patterned-assembly method. In addition, we used NPs with flexible properties to construct three-dimensional (3D) animate assemblies. On the basis of a thorough understanding of the structure-property correlation, a series of nanoassembled interfaces with various structures have been developed for practice. In comparison with traditional nanomaterial-environment interfaces, the nanoassembled interfaces can change the mode of contact between the nanomaterial and environment, thereby maximizing the number of active sites and driving interferent/product off the nanoassembled interface. The geometry, porosity, and deformable/motional properties in the nanoassembled interface can be applied to enhance the mass transfer dynamics in the chemical reaction. Moreover, the nanoassembled interface can be used to strengthen the affinity between the NP assemblies and targets, thereby enhancing the adsorption efficiency. As shown in these examples, the nanoassembled interface can effectively change the speed, intensity, and mode of interactions between the NP assemblies and environment in spatiotemporal scales.The overall performance of the interfacial dynamics can be improved by the nanoassembled interface, thereby facilitating practical application in flowing systems. We have extended the applications of nanoassembled interfaces from simple adsorption to complex reactions in flowing systems, including in vivo magnetic resonance imaging, electrocatalytic gas evolution reaction, bacterial capture, sensing of exhaled volatile organic compounds, and heterogeneous catalysis. Our current endeavors to explore the applicability of animate nanoassembled interfaces for dynamic tailoring have widened the scope of research, and attempts to construct intelligent interfaces for applications are underway.

4.
Angew Chem Int Ed Engl ; 61(29): e202205628, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35546068

RESUMO

The detection of biomarkers in tears has aroused great interest owing to the advantages of non-invasive and rapid collection. The combination of ultrasensitivity and label-free detection of surface-enhanced Raman spectroscopy (SERS) sensors is expected to achieve real-time diagnosis in home medical care. However, the surface of SERS sensors is susceptible to biofouling and inactivation by biological impurities in tears, resulting in rapid degradation of sensitivity, limiting the commercialization of point-of-care devices. Herein, a binary nanosphere array with dual properties is constructed as a separation-sensing platform for the diagnosis of target molecules in tears. The upper part of the structure is composed of Au nanoparticles (AuNPs) and a sputtering Au layer, which can bind the target molecules that interact with Au and provide high-strength and high-density SERS hotspots. The lower half is an inactive SiO2 nanosphere array with periodic large pores that allows biological impurities to penetrate the lower part and be separated from the target analyte. Furthermore, this substrate was integrated into homemade tear kits, enabling simultaneous tear collection, pre-separation, and detection. Combined with the Raman spectra of tears and LDA analysis, we successfully identified patients with jaundice in clinics. This platform is expected to provide an opportunity for early disease screening based on biological fluids.


Assuntos
Icterícia , Nanopartículas Metálicas , Ouro/química , Humanos , Nanopartículas Metálicas/química , Dióxido de Silício , Análise Espectral Raman/métodos
5.
Angew Chem Int Ed Engl ; 60(26): 14365-14369, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33843116

RESUMO

Molecules in confined spaces exhibit unusual behaviors that are not typically observed in bulk systems. Such behavior can provide alternative strategies for exploring new reaction pathways. Cleavage of the C=N bond of Nile red (NR) in solution is an irreversible reaction. Here, we used spatial confinement within a cationic micelle-confined system to convert this reaction to a reversible process. The fluorescence of NR shifted between red and green for nine cycles. The new chemical pathway based on spatial confinement can be attributed to two factors: increasing the local concentration of reactants and reducing the reaction energy barrier. This effect is supported by both experimental evidence and theoretical calculations. The cross-linked silica shell comprising the confinement chamber stabilizes the enclosed molecules. This reduces fluorophore leakage and maintains fluorescence intensity in most environments, including in solution, on paper, and in hydrogel films, and expands practical applications in encrypted information and multi-informational displays.

6.
J Am Chem Soc ; 142(4): 1857-1863, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868361

RESUMO

Redesigning heterogeneous catalysts so that they can simultaneously integrate the efficiency and durability under reaction environments with respect to gas fuel production, such as hydrogen (H2), oxygen (O2), or carbon monoxide (CO), has proven challenging. In this work, we report the successful template-assisted printing-based assembly of platinum (Pt) nanoparticles (NPs) into striped-pattern (SP) superlattices to produce H2. In comparison to drop-casting flat Pt NPs films, SP superlattices lead to higher mass transference and smaller bubble stretch force, representing a general strategy to improve the efficiency and durability of pre-existed Pt catalysts for the hydrogen evolution reaction (HER), as well as higher current densities than commercial Pt/C, Pt NP films, and many of the other Pt-based or non-Pt-based HER catalysts reported in the literature. The generic nature of template-assisted printing leads to flexibility in the composition, size, and shape of the constituent NPs or molecules, and thus extends such an accelerated technique for producing the oxygen evolution reaction and electrochemical reduction of CO2 to CO.

7.
J Am Chem Soc ; 142(20): 9408-9414, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32302117

RESUMO

The dynamic status near the surface of a catalyst can significantly affect the catalytic process, because the overall reaction rate depends on the mass velocity of product attachment and reactant detachment. As a dominant diffusion mechanism, molecular diffusion is known as a slow process that inhibits the fast contact between the reactants and the heterogeneous catalyst, which depresses catalytic conversion efficiency. Herein, we report a strategy that can break such a stagnant layer to facilitate the mass transport toward the catalyst surface, wherein Pd nanocubes (NCs) encapsulated in soft metal-organic framework (MOF) nanosheets are used as catalysts for the hydrogenation reactions. The soft MOF supports render deformable features to enhance mass transport across the Pd NCs, which is vital to enhance the catalyst performance. In combination with numerical simulations, we identify the deformable MOF driven by the shear force of flowing fluid to increase dye adsorption and catalytic conversion by 5- and 3-fold, respectively, as compared to a counterpart system containing nondeformable MOFs. The catalytic efficiency presents a volcano-type trend with the length-to-spacing ratio of MOF nanosheet being designed and reaches the maximum with a length-to-spacing ratio of 2:1. This technique provides unique opportunities to design a proof-of-concept self-propelled catalysis on the basis of a greater mechanistic understanding of heterogeneous catalytic reactions.

8.
Angew Chem Int Ed Engl ; 59(37): 15953-15957, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519404

RESUMO

The diffusion of target analytes is a determining factor for the sensitivity of a given gas sensor. Surface adsorption results in a low-concentration region near the sensor surface, producing a concentration gradient perpendicular to the surface, and drives a net flux of molecules toward solid reactive reagents on the sensor surface, that is, vertical diffusion. Here, organic semiconductor supramolecules were patterned into micromeshed arrays to integrate vertical and horizontal diffusion pathways. When used as a gas sensor, these arrays have an order of magnitude higher sensitivity than traditional film-based sensors. The sensor sensitivity ramp down with the increase in coverage density of reactive reagents, yielding two linear regions demarcated by 0.3 coverage, which are identified by the experimental results and simulations. The universal nature of template-assisted patterning allows adjustments in the composition, size, and shape of the constituent material, including nanofibers, nanoparticles, and molecules, and thus serves to improve the sensitivity of gas sensors for detecting various volatile organic compounds.

9.
Chemistry ; 25(45): 10662-10667, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31161691

RESUMO

Lamellar nanomaterials with specific architectures and novel properties have received increasing attention from both scientific and technological fields in recent years because of their potential applications in catalysis, energy conversion, and storage devices. Bulk supercluster pellets with well-defined lamellar structures were fabricated by assembling silver clusters and mercaptoalkyl acids (MXA) to investigate the mechanical properties. The relationship between the assembled structure and pressure resistance was surveyed for the first time. The enhanced interlayer interactions were found to increase the elastic modulus of the Ag-MXA supercluster architectures.

10.
Angew Chem Int Ed Engl ; 58(7): 2055-2059, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30569617

RESUMO

A simple method was adopted in which ultrathin cerium oxide nanoplates (<1.4 nm) were synthesized to increase the surface atomic content, allowing transformation from a face-centered cubic (fcc) phase to a body-centered tetragonal (bct) phase. Three types of cerium oxide nanoparticles of different thicknesses (1.2 nm ultrathin nanoplates, 2.2 nm nanoplates, and 5.4 nm nanocubes) were examined using transmission electron microscopy and X-ray diffraction. The metastable bct phase was observed only in ultrathin nanoplates. Thermodynamic energy analysis confirmed that the surface energy of the ultrathin nanoplates is the cause of the remarkable stabilization of the metastable bct phase. The mechanism of surface energy regulation can be expanded to other metallic oxides, thus providing a new means for manipulating and stabilizing novel materials under ambient conditions that otherwise would not be recovered.

11.
J Am Chem Soc ; 140(43): 14211-14216, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30277759

RESUMO

To design functional nanomaterials for biomedical applications, the challenge for scientists is to gain further understanding of their unique toxicological properties. Nonspecific adhesion of proteins and endocytosis are considered to be the major biotoxic sources of imaging nanoprobes. Here, we fabricated ultrathin gadolinium oxide (Gd2O3) nanocoils with a low Young's modulus, which provides transformable properties in solution. The spatial configurational freedom of ultrathin nanocoils induces the steric repulsion to the nonspecific adsorption of proteins that, in turn, suppresses cellular uptake and thus improves their biocompatibility. The larger number of exposed surface gadolinium atoms of the ultrathin nanocoils provided enhanced T1 magnetic resonance (MR) imaging contrast with high signal activation. Such nanocontrast agents were applied to in vivo MR bioimaging to achieve prolonged circulation lifetime. The improved biocompatibility by transformable Gd2O3 nanocoils could open up a new perspective toward the design and construction of various nano-biomedicines in the future.

12.
Anal Chem ; 89(22): 12054-12058, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29050471

RESUMO

Graphene quantum dots (GQDs) have been widely used as fluorescence probes to detect metal ions with satisfactory selectivity. However, the diverse chemical structures of GQDs lead to selectivity for multiple metal ions, and this can lead to trouble in the interpretation of selectivity due to the lack of an in depth and systematic analysis. Herein, bare GQDs were synthesized by oxidizing carbon black with nitric acid and used as fluorescent probes to detect metal ions. We found that the specific ability of GQDs to recognize ferric ions relates to the acidity of the medium. Specifically, we demonstrated that the coordination between GQDs and Fe3+ is regulated by the pH of the aqueous GQDs solution. Dissociative Fe3+ can coordinate with the hydroxyl groups on the surface of the GQDs to form aggregates (such as iron hydroxide), which induces fluorescence quenching. A satisfactory selectivity for Fe3+ ions was achieved under relatively acidic conditions; this is because of the extremely small Ksp of ferric hydroxide compared to those of other common metal hydroxides. To directly survey the key parameter for Fe3+ ion specificity, we performed the detection experiment in an environment free of interference from the buffer solution, noninherent groups, and other complex factors. This study will help researchers understand the selectivity mechanisms of GQDs as fluorescence probes for metal ions, which could guide the design of other GQD-based sensor platforms.

13.
Small ; 12(38): 5320-5328, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27552107

RESUMO

Copper sulfides (Cu2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu7 S4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu7 S4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu7 S4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%.

14.
Anal Chem ; 86(12): 5620-3, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24855934

RESUMO

Carbon dots (CDs) have rigorously been investigated on their unique fluorescent properties but rarely their electrogenerated chemiluminescence (ECL) behavior. We are here to report a dual-peak ECL system of CDs, one at -2.84 V (ECL-1) and the other at -1.71 V (ECL-2) during the cyclic sweep between -3.0 and 3.0 V at scan rate of 0.2 V s(-1) in 0.1 M tetrabutyl ammonium bromide (TBAB) ethanol solution, which is more efficiency to distinguish metallic ions than single-peak ECL. The electron transfer reaction between individual electrochemically reduced nanocrystal species and coreactants led to ECL-1, in which the electron injected to the conduction band of CDs in the cathodic process. Ion annihilation reactions induced direct formation of exciplexes that produced another ECL signal, ECL-2. ECL-1 showed higher sensitivity to the surrounding environment than ECL-2 and thus was used for ECL detection of metallic ions. Herein, we can serve as an internal standard method to detect iron ions. A linear relationship of the intensity ratio R of ECL-1 and ECL-2 to iron ions was observed in the concentration extending from 5 × 10(-6) to 8 × 10(-5) M with a detection limit of 7 × 10(-7) M.

16.
STAR Protoc ; 4(4): 102704, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37943663

RESUMO

The transformation of superlattice structures into functional devices requires high-quality preparation. Inkjet printing is potentially a cutting-edge technology for nanofabrication. Here, we present a protocol to prepare inks for constructing patterned superlattice structures using print assembly techniques. We describe steps for preparing oleophobic substrates, optimizing ink parameters, and preparing the patterned superlattice array. We then detail procedures for preparing a multichannel surface-enhanced Raman scattering sensor and evaluating its performance. This protocol can potentially facilitate the commercialization of superlattice-related devices. For complete details regarding the use and execution of this protocol, please refer to Zhao et al.1.


Assuntos
Tinta , Tecnologia
17.
Matter ; 5(8): 2402-2404, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35945981

RESUMO

In a recent study in Nature Biomedical Engineering, Wei's group constructed a field-effect transistor (FET) based on the "molecular electromechanical system" (MolEMS). MolEMS enabled FETs to specifically capture viral nucleic acids and efficiently transduce signals, achieving a rapid and ultra-sensitive detection of SARS-CoV-2.

18.
Sci Adv ; 8(45): eadd1559, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367933

RESUMO

Hierarchical assemblies of functional nanoparticles can have applications exceeding those of individual constituents. Arranging components in a certain order, even at the atomic scale, can result in emergent effects. We demonstrate that printed atomic ordering is achieved in multiscale hierarchical structures, including nanoparticles, superlattices, and macroarrays. The CsPbBr3 perovskite nanocubes self-assemble into superlattices in ordered arrays controlled across 10 scales. These structures behave as single nanoparticles, with diffraction patterns similar to those of single crystals. The assemblies repeat as two-dimensional planar unit cells, forming crystalline superlattice arrays. The fluorescence intensity of these arrays is 5.2 times higher than those of random aggregate arrays. The multiscale coherent states can be printed on a meter-scale panel as a micropixel light-producing layer of primary-color photon emitters. These hierarchical assemblies can boost the performance of optoelectronic devices and enable the development of high-efficiency, directional quantum light sources.

19.
Adv Sci (Weinh) ; 9(29): e2202644, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981891

RESUMO

Polymeric nanocarriers have a broad range of clinical applications in recent years, but an inefficient delivery of polymeric nanocarriers to target tissues has always been a challenge. These results show that tuning the elasticity of hydrogel nanoparticles (HNPs) improves their delivery efficiency to tumors. Herein, a microfluidic system is constructed to evaluate cellular uptake of HNPs of different elasticity under flow conditions. It is found that soft HNPs are more efficiently taken up by cells than hard HNPs under flow conditions, owing to the greater adhesion between soft HNPs and cells. Furthermore, in vivo imaging reveals that soft HNPs have a more efficient tumor delivery than hard HNPs, and the greater targeting potential of soft HNPs is associated with both prolonged blood circulation and a high extent of cellular adhesion.


Assuntos
Nanopartículas , Neoplasias , Elasticidade , Humanos , Hidrogéis , Polímeros
20.
Sci Adv ; 6(20): eaba1321, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426506

RESUMO

Nanoparticle (NP) assemblies are among the foremost achievements of nanoscience and nanotechnology because their interparticle interactions overcome the weaknesses displayed by individual NPs. However, previous studies have considered NP assemblies as inanimate, which had led to their dynamic properties being overlooked. Animate properties, i.e., those mimicking biological properties, endow NP ensembles with unique and unexpected functionalities for practical applications. In this critical review, we highlight recent advances in our understanding of the properties of NP assemblies, particularly their animate properties. Key examples are used to illustrate critical concepts, and special emphasis is placed on animate property-dependent applications. Last, we discuss the barriers to further advances in this field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa