RESUMO
The atmospheric oxidation of 1,1-dichloro-1,3,3,3-tetrafluoropropane, HCFC-234fb (DTP), leads to the formation of harmful radicals, contributing to stratospheric ozone depletion. Thus, a detailed study of the gas-phase oxidation of the first-generation chlorofluorocarbon alternative HCFC-234fb by a reaction with hydroxyl radicals and chlorine atoms is important to understand its harmful effects on the environment. In this work, we have performed quantum chemical calculations to investigate the thermodynamic and kinetic aspects of the titled reaction. The potential energy profile calculated at the CCSD(T)/aug-cc-pVTZ//MP2/cc-pVTZ level of theory shows that the major reaction pathway involves the abstraction of the H-atom from the central carbon atom, C2, giving rise to the product radical CF3CËHCCl2F. The calculated rate-coefficients for the reaction with ËOH and Cl-atoms are 3.89 × 10-15 and 2.54 × 10-17 cm3 molecule-1 s-1, respectively, at 298 K and are in accordance with the experimental rate coefficients. The results suggest that the rate-coefficient for the reaction of DTP with ËOH is two orders of magnitude higher than that with Cl-atoms, indicating greater significance of the former reaction in the atmosphere. With the rate-coefficient values, the lifetime and the radiative efficiency were calculated to be 8.2 years and 0.246 W m-2 ppb-1, respectively. A 100-year global warming potential (GWP) of 712 was also estimated using the lifetime corrected radiative efficiency value.
RESUMO
OBJECTIVE: Subclinical life style disease can cause endothelial dysfunction associated with perfusion abnormalities and reduced vascular compliance. Subclinical elevated beta type natriuretic peptide (BNP) has been associated with altered fluid shift from extra to intracellular space during acute hypoxia. Therefore we measured vascular response and BNP levels during acute hypoxia to study endothelial functions among healthy individuals. METHODS: Individuals were exposed to acute normobaric hypoxia of FiO2 = 0.15 for one hour in supine position and their pulmonary and systemic vascular response to hypoxia was compared. Individuals were divided into two groups based on either no response (Group 1) or rise in systolic pulmonary artery pressure to hypoxia (Group 2) and their BNP levels were compared. RESULTS: BNP was raised after hypoxia exposure in group 2 only from 18.52 ± 7 to 21.56 ± 10.82 picogram/ml, p < 0.05. Group 2 also showed an increase in mean arterial pressure and no fall in total body water in response to acute hypoxia indicating decreased endothelial function compared to Group 1. CONCLUSION: Rise in pulmonary artery pressure and BNP level in response to acute normobaric hypoxia indicates reduced endothelial function and can be used to screen subclinical lifestyle disease among healthy population.
Assuntos
Hipóxia , Peptídeo Natriurético Encefálico , Humanos , Hipóxia/diagnóstico , Pulmão/irrigação sanguínea , Vasodilatadores , Estilo de Vida , Artéria PulmonarRESUMO
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/química , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cumarínicos/química , Estrogênios/farmacologia , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
Experiments were conducted to study sexual isolation among two natural populations of Drosophila ananassae maintained at 18 degrees C and 24 degrees C for 12 generations in the laboratory to see the effect of this environmental variable on behavioural isolation. Multiple choice technique was used and matings were observed directly in Elens Wattiaux mating chamber. Results showed sexual isolation among strains that were maintained at different temperatures, indicating that temperature may have affected the mating behaviour of the flies which resulted in the induction of ethological isolation among the strains.
Assuntos
Grupos de População Animal/fisiologia , Drosophila/fisiologia , Comportamento Sexual Animal , Temperatura , Grupos de População Animal/genética , Animais , Drosophila/genética , Comportamento Sexual Animal/fisiologiaRESUMO
AIMS: Baseline elevated B-type Natriuretic Peptide (BNP) has been found in high altitude pulmonary edema susceptible population. Exaggerated pulmonary vascular response to hypoxia may be related to endothelial dysfunction in hypoxia susceptible. We hypothesize that baseline BNP levels can predict hypoxia susceptibility in healthy individuals. MAIN METHODS: The pulmonary vascular response to hypoxia was compared in 35 male healthy individuals divided into two groups based on BNP levels (Group 1 ≤ 15 and Group 2 > 15 pg/ml). Acute normobaric hypoxia was administered to both the groups, to confirm hypoxia susceptibility in Group 2. KEY FINDINGS: Unlike Group 1, Group 2 had elevated post hypoxia BNP levels (26 vs 33.5 pg/ml, p = 0.002) while pulmonary artery pressure was comparable. A negative correlation with tissue oxygen consumption (delta pO2) and compartmental fluid shift was seen in Group 1 only. Endothelial dysfunction in Group 2 resulted in reduced vascular compliance leading to elevation of mean blood pressure on acute hypoxia exposure. BNP showed a positive correlation with endothelial dysfunction in Group 2 and has been linked to pre-diabetic disorder (HbA1c 6 ± 0.44%) and may additionally represent a lower cross-sectional area of vascular bed related to vascular remodeling mediated by chronic hypoxia. SIGNIFICANCE: Hypoxia susceptibility in healthy individuals may be related to endothelial dysfunction that limits vascular compliance during hypoxic stress. BNP level showed positive correlation with HbA1c (r = 0.49, p = 0.04) and negative correlation with delta pO2 (r = -0.52, p = 0.04) can predict reduced microvascular compliance due to endothelial dysfunction contributing to hypoxia susceptibility in healthy individuals. BNP levels≤15 pg/ml at sea level is indicative of hypoxia resistance.
Assuntos
Altitude , Endotélio Vascular/fisiopatologia , Hipóxia/fisiopatologia , Pulmão/fisiopatologia , Peptídeo Natriurético Encefálico/metabolismo , Artéria Pulmonar/fisiopatologia , Edema Pulmonar/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Testes de Função RespiratóriaRESUMO
S016-1271 (LR8P) is a broad spectrum novel cationic antimicrobial peptide. The objective of the present study was to develop a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) based bioanalytical method of S016-1271 peptide in mice and human plasma in order to uncover its pharmacokinetic aspects. The chromatographic separation of S016-1271 (FR8P as internal standard) was achieved on a Waters™ X select CSH-C18 column (75 × 3.0 mm, 2.5 µ) using mixture of acetonitrile and triple distilled water (TDW) both containing 0.05% formic acid as mobile phase. A seven minute linear gradient method was designed to separate analytes from ion suppression at a flow rate of 0.3 mL/min. The extraction of analytes from mice and human plasma was performed through solid phase extraction technique using mixed mode weak cation exchange cartridge (Thermo SOLA WCX 10 mg 1CC) with an extraction recovery of analytes about 75%. Mass spectrometric detection of S016-1271 and FR8P was performed with optimized multiple reaction monitoring (MRM) transitions (Q1/Q3) at 658.8 [M+3H] 3+/653.2 [M+3H-NH3] 3+ and 443.4 [M+5H]5+ /434.7 [y12-NH3]4+,respectively in positive electrospray ionization (ESI) mode. The linearity in mice and human plasma was established over a concentration range of 7.81-250 ng/mL with regression coefficient (r2 > 0.99). The currently developed method was validated as per US-FDA guidelines and found to be within the acceptable limits. The method was successfully applied to intravenous (IV) pharmacokinetic study in mice wherein the levels were detected upto 24 h. The peptide demonstrated poor distribution characteristics which were demonstrated through volume of distribution at steady state (202.71 ± 47.02 mL/kg less than total body water of mice; 580 mL/kg). The clearance of the peptide predominantly occurred through central compartment (central clearance is 25 fold greater than peripheral clearance). Also, the in vitro pharmacokinetic studies demonstrated the stability of S016-1271 in plasma and high plasma protein binding in mice and humans.