RESUMO
The ability for microbes to enter dormant states is adaptive under resource fluctuations and has been linked to the maintenance of diversity. Nevertheless, the mechanism by which microbial dormancy gives rise to the density-dependent feedbacks required for stable coexistence under resource fluctuations is not well understood. Via analysis of consumer-resource models, we show that the stable coexistence of dormancy and non-dormancy strategists is a consequence of the former benefiting more from resource fluctuations while simultaneously reducing overall resource variability, which sets up the requisite negative frequency dependence. Moreover, we find that dormants can coexist alongside gleaner and opportunist strategies in a competitive-exclusion-defying case of three species coexistence on a single resource. This multi-species coexistence is typically characterised by non-simple assembly rules that cannot be predicted from pairwise competition outcomes. The diversity maintained via this three-way trade-off represents a novel phenomenon that is ripe for further theoretical and empirical inquiry.
Assuntos
Modelos Biológicos , Ecossistema , Interações Microbianas , BiodiversidadeRESUMO
Understanding mechanisms that promote the maintenance of biodiversity (genetic and species diversity) has been a central topic in evolution and ecology. Previous studies have revealed that diapause can contribute to coexistence of competing genotypes or species in fluctuating environments via the storage effect. However, they tended to focus on differences in reproductive success (e.g. seed yield) and diapause termination (e.g. germination) timing. Here we tested whether different photoperiodic responses in diapause induction can promote coexistence of two parthenogenetic (asexual) genotypes of Daphnia pulex in Lake Fukami-ike, Japan. Through laboratory experiments, we confirmed that short day length and low food availability induced the production of diapausing eggs. Furthermore, we found that one genotype tended to produce diapausing eggs in broader environmental conditions than the other. Terminating parthenogenetic reproduction earlier decreases total clonal production, but the early diapausing genotype becomes advantageous by assuring reproduction in 'short' years where winter arrival is earlier than usual. Empirically parameterized theoretical analyses suggested that different photoperiodic responses can promote coexistence via the storage effect with fluctuations of the growing season length. Therefore, timing of diapause induction may be as important as diapause termination timing for promoting the maintenance of genetic diversity in fluctuating environments.
Assuntos
Daphnia pulex , Diapausa , Animais , Ritmo Circadiano/fisiologia , Fotoperíodo , Variação Genética , Daphnia/genéticaRESUMO
Scientific knowledge is produced in multiple languages but is predominantly published in English. This practice creates a language barrier to generate and transfer scientific knowledge between communities with diverse linguistic backgrounds, hindering the ability of scholars and communities to address global challenges and achieve diversity and equity in science, technology, engineering and mathematics (STEM). To overcome those barriers, publishers and journals should provide a fair system that supports non-native English speakers and disseminates knowledge across the globe. We surveyed policies of 736 journals in biological sciences to assess their linguistic inclusivity, identify predictors of inclusivity, and propose actions to overcome language barriers in academic publishing. Our assessment revealed a grim landscape where most journals were making minimal efforts to overcome language barriers. The impact factor of journals was negatively associated with adopting a number of inclusive policies whereas ownership by a scientific society tended to have a positive association. Contrary to our expectations, the proportion of both open access articles and editors based in non-English speaking countries did not have a major positive association with the adoption of linguistically inclusive policies. We proposed a set of actions to overcome language barriers in academic publishing, including the renegotiation of power dynamics between publishers and editorial boards.
Assuntos
Disciplinas das Ciências Biológicas , Editoração , Idioma , LinguísticaRESUMO
Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature.
Assuntos
Evolução Biológica , Ecossistema , Dinâmica Populacional , Genética Populacional , Crescimento DemográficoRESUMO
Growing evidence suggests that temporally fluctuating environments are important in maintaining variation both within and between species. To date, however, studies of genetic variation within a population have been largely conducted by evolutionary biologists (particularly population geneticists), while population and community ecologists have concentrated more on diversity at the species level. Despite considerable conceptual overlap, the commonalities and differences of these two alternative paradigms have yet to come under close scrutiny. Here, we review theoretical and empirical studies in population genetics and community ecology focusing on the 'temporal storage effect' and synthesise theories of diversity maintenance across different levels of biological organisation. Drawing on Chesson's coexistence theory, we explain how temporally fluctuating environments promote the maintenance of genetic variation and species diversity. We propose a further synthesis of the two disciplines by comparing models employing traditional frequency-dependent dynamics and those adopting density-dependent dynamics. We then address how temporal fluctuations promote genetic and species diversity simultaneously via rapid evolution and eco-evolutionary dynamics. Comparing and synthesising ecological and evolutionary approaches will accelerate our understanding of diversity maintenance in nature.
Assuntos
Evolução Biológica , Genética Populacional , Dinâmica PopulacionalRESUMO
Community ecology typically assumes that competitive exclusion and species coexistence are unaffected by evolution on the time scale of ecological dynamics. However, recent studies suggest that rapid evolution operating concurrently with competition may enable species coexistence. Such findings necessitate general theory that incorporates the coexistence contributions of eco-evolutionary processes in parallel with purely ecological mechanisms and provides metrics for quantifying the role of evolution in shaping competitive outcomes in both modelling and empirical contexts. To foster the development of such theory, here we extend the interpretation of the two principal metrics of modern coexistence theory-niche and competitive ability differences-to systems where competitors evolve. We define eco-evolutionary versions of these metrics by considering how invading and resident species adapt to conspecific and heterospecific competitors. We show that the eco-evolutionary niche and competitive ability differences are sums of ecological and evolutionary processes, and that they accurately predict the potential for stable coexistence in previous theoretical studies of eco-evolutionary dynamics. Finally, we show how this theory frames recent empirical assessments of rapid evolution effects on species coexistence, and how empirical work and theory on species coexistence and eco-evolutionary dynamics can be further integrated.
Assuntos
Evolução Biológica , Modelos Teóricos , Adaptação Fisiológica , Ecossistema , Dinâmica PopulacionalRESUMO
Species exhibit various trade-offs that can result in stable coexistence of competitors. The gleaner-opportunist trade-off to fluctuations in resource abundance is one of the most intuitive, yet also misunderstood, coexistence-promoting trade-offs. Here, we review its history as an ecological concept, discuss extensions to the classical theory and outline opportunities to advance its understanding. The mechanism of coexistence between species that grow relatively faster than their competitors in a low-resource environment (i.e. a gleaner) versus a high-resource environment (i.e. an opportunist) was first proposed in the 1970s. Stable coexistence could emerge between gleaners and opportunists if the opportunist species (dominant in unstable environments) dampens resource fluctuations via relatively convex functional responses, while the gleaner species (dominant in stable environments) promotes fluctuations, or diminishes them less than the opportunist does, via relatively saturating functional responses. This fluctuation-dependent coexistence mechanism has since been referred to by various names, including the Armstrong-McGehee mechanism and relative nonlinearity of competition. Several researchers have argued this mechanism likely plays a relatively minor role in species coexistence owing in part to the restricted range of conditions that allow it to operate. More recent theoretical research, however, suggests that relative nonlinearity can operate over wider conditions than previously thought. Here, we identify several novel, or little explored, extensions to the gleaner-opportunist trade-off that can yield species coexistence under phenomena as diverse as fluctuations in predation/pathogen pressure, multiple resources, phenotypic plasticity and rapid evolution, amongst other phenomena. While the original definition of the gleaner-opportunist trade-off may be imperfect as a collective for these extensions, we argue that a subtle reframing of the trade-off focusing on species' performance in equilibrium versus fluctuating conditions (irrespective of preferences for high or low resources, predation pressure or other competitive factors) reveals their fundamental commonality in stable coexistence via relative nonlinearity. An extended framing shines a light on the potential ubiquity of this canonical trade-off in nature and on the breadth of theoretical and empirical terrain that remains to be trodden.
Assuntos
Ecossistema , Modelos Biológicos , Animais , Comportamento Predatório , Adaptação FisiológicaRESUMO
Recent studies have demonstrated that rapid contemporary evolution can play a significant role in regulating population dynamics on ecological timescales. Here we identify a previously unrecognised mode by which rapid evolution can promote species coexistence via temporal fluctuations and a trade-off between competitive ability and the speed of adaptive evolution. We show that this interaction between rapid evolution and temporal fluctuations not only increases the range of coexistence conditions under a gleaner-opportunist trade-off (i.e. low minimum resource requirement [R* ] vs. high maximum growth rate) but also yields stable coexistence in the absence of a classical gleaner-opportunist trade-off. Given the propensity for both oscillatory dynamics and different rates of adaptation between species (including rapid evolution and phenotypic plasticity) in the real world, we argue that this expansion of fluctuation-dependent coexistence theory provides an important overlooked solution to the so-called 'paradox of the plankton'.
Assuntos
Ecossistema , Modelos Biológicos , Adaptação Fisiológica , Evolução Biológica , Plâncton , Dinâmica PopulacionalRESUMO
Inducible defences against predation are widespread in the natural world, allowing prey to economise on the costs of defence when predation risk varies over time or is spatially structured. Through interspecific interactions, inducible defences have major impacts on ecological dynamics, particularly predator-prey stability and phase lag. Researchers have developed multiple distinct approaches, each reflecting assumptions appropriate for particular ecological communities. Yet, the impact of inducible defences on ecological dynamics can be highly sensitive to the modelling approach used, making the choice of model a critical decision that affects interpretation of the dynamical consequences of inducible defences. Here, we review three existing approaches to modelling inducible defences: Switching Function, Fitness Gradient and Optimal Trait. We assess when and how the dynamical outcomes of these approaches differ from each other, from classic predator-prey dynamics and from commonly observed eco-evolutionary dynamics with evolving, but non-inducible, prey defences. We point out that the Switching Function models tend to stabilise population dynamics, and the Fitness Gradient models should be carefully used, as the difference with evolutionary dynamics is important. We discuss advantages of each approach for applications to ecological systems with particular features, with the goal of providing guidelines for future researchers to build on.
Assuntos
Evolução Biológica , Comportamento Predatório , Animais , Ecossistema , Fenótipo , Dinâmica PopulacionalRESUMO
Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.
Assuntos
Luz , Fitoplâncton/crescimento & desenvolvimento , Biomassa , Chara/crescimento & desenvolvimento , Chara/efeitos da radiação , Ecossistema , Modelos Teóricos , Fotossíntese , Fitoplâncton/efeitos da radiação , Densidade Demográfica , Dinâmica PopulacionalRESUMO
Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.
Assuntos
Evolução Biológica , Modelos Biológicos , Plantas , Rotíferos/fisiologia , Animais , Cadeia Alimentar , Variação Genética/fisiologia , Característica Quantitativa HerdávelRESUMO
Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator-prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species.
Assuntos
Evolução Biológica , Herbivoria , Fenótipo , Comportamento Predatório , Animais , Cadeia Alimentar , Modelos BiológicosRESUMO
Trophic interactions are central to ecosystem functioning, but the link between food web structure and ecosystem functioning remains obscure. Regularities (i.e. consistent patterns) in food web structure suggest the possibility of regularities in ecosystem functioning, which might be used to relate structure to function. We introduce a novel, genetic algorithm approach to simulate food webs with maximized throughput (a proxy for ecosystem functioning) and compare the structure of these simulated food webs to real empirical food webs using common metrics of food web structure. We repeat this analysis using robustness to secondary extinctions (a proxy for ecosystem resilience) instead of throughput to determine the relative contributions of ecosystem functioning and ecosystem resilience to food web structure. Simulated food webs that maximized robustness were similar to real food webs when connectance (i.e. levels of interaction across the food web) was high, but this result did not extend to food webs with low connectance. Simulated food webs that maximized throughput or a combination of throughput and robustness were not similar to any real food webs. Simulated maximum-throughput food webs differed markedly from maximum-robustness food webs, which suggests that maximizing different ecological functions can generate distinct food web structures. Based on our results, food web structure would appear to have a stronger relationship with ecosystem resilience than with ecosystem throughput. Our genetic algorithm approach is general and is well suited to large, realistically complex food webs. Genetic algorithms can incorporate constraints on structure and can generate outputs that can be compared directly to empirical data. Our method can be used to explore a range of maximization or minimization hypotheses, providing new perspectives on the links between structure and function in ecological systems.
Assuntos
Cadeia Alimentar , Animais , Modelos BiológicosRESUMO
Theory of invasion ecology indicates that the number of invading individuals (propagule size) and the timing of invasion are important for invasion success. Propagule size affects establishment success due to an Allee effect and the effect of demographic stochasticity, whereas the timing of invasion does so via niche opportunity produced by fluctuating predation pressure and resource abundance. We propose a synthesis of these two mechanisms by a time-varying dose-response curve where the dose is propagule size and the response is establishment probability. We show an example of the synthesis in a simple predator-prey model where successful invasion occurs as a demographic regime shift because of the bistability of the system. The two mechanisms are not independent, but simultaneously determine invasion success in our model. We found that positive growth rate of an invading species does not ensure its establishment, especially when its propagule size is small or when its growth rate is in a decreasing trend. We suggest the difficulty of understanding invasion process based on a dose-response curve of propagule size as no unique curve can be determined due to the effects of invasion timing (i.e., the threshold of demographic regime shift is time varied). The results of our model analysis also have an implication on the phase relationship between population cycles of predators and prey.
Assuntos
Evolução Biológica , Cadeia Alimentar , Modelos Biológicos , Animais , Variação Genética , Dinâmica Populacional , Fatores de TempoRESUMO
There have been conflicting arguments as to what happened in the human-chimpanzee speciation event. Patterson et al. (2006, Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103-1108) proposed a hypothesis that the human-chimpanzee speciation event involved a complicated demographic process: that is, the ancestral lineages of humans and chimpanzees experienced temporal isolation followed by a hybridization event. This hypothesis stemmed from two major observations: a wide range of human-chimpanzee nucleotide divergence across the autosomal genome and very low divergence in the X chromosome. In contrast, Innan and Watanabe (2006, The effect of gene flow on the coalescent time in the human-chimpanzee ancestral population. Mol Biol Evol. 23:1040-1047) demonstrated that the null model of instantaneous speciation fits the genome-wide divergence data for the two species better than alternative models involving partial isolation and migration. To reconcile these two conflicting reports, we first reexamined the analysis of autosomal data by Patterson et al. (2006). By providing a theoretical framework for their analysis, we demonstrated that their observation is what is theoretically expected under the null model of instantaneous speciation with a large ancestral population. Our analysis indicated that the observed wide range of autosomal divergence is simply due to the coalescent process in the large ancestral population of the two species. To further verify this, we developed a maximum likelihood function to detect evidence of hybridization in genome-wide divergence data. Again, the null model with no hybridization best fits the data. We conclude that the simplest speciation model with instantaneous split adequately describes the human-chimpanzee speciation event, and there is no strong reason to involve complicated factors in explaining the autosomal data.
Assuntos
Evolução Molecular , Especiação Genética , Modelos Genéticos , Pan troglodytes/genética , Animais , Simulação por Computador , Bases de Dados Genéticas , Haplótipos , Humanos , Hibridização Genética , Modelos EstatísticosRESUMO
BACKGROUND: Microbiome dynamics are both crucial indicators and potential drivers of human health, agricultural output, and industrial bio-applications. However, predicting microbiome dynamics is notoriously difficult because communities often show abrupt structural changes, such as "dysbiosis" in human microbiomes. METHODS: We integrated theoretical frameworks and empirical analyses with the aim of anticipating drastic shifts of microbial communities. We monitored 48 experimental microbiomes for 110 days and observed that various community-level events, including collapse and gradual compositional changes, occurred according to a defined set of environmental conditions. We analyzed the time-series data based on statistical physics and non-linear mechanics to describe the characteristics of the microbiome dynamics and to examine the predictability of major shifts in microbial community structure. RESULTS: We confirmed that the abrupt community changes observed through the time-series could be described as shifts between "alternative stable states" or dynamics around complex attractors. Furthermore, collapses of microbiome structure were successfully anticipated by means of the diagnostic threshold defined with the "energy landscape" analysis of statistical physics or that of a stability index of nonlinear mechanics. CONCLUSIONS: The results indicate that abrupt microbiome events in complex microbial communities can be forecasted by extending classic ecological concepts to the scale of species-rich microbial systems. Video Abstract.
Assuntos
Microbiota , HumanosRESUMO
Facilitative interactions between microbial species are ubiquitous in various types of ecosystems on the Earth. Therefore, inferring how entangled webs of interspecific interactions shift through time in microbial ecosystems is an essential step for understanding ecological processes driving microbiome dynamics. By compiling shotgun metagenomic sequencing data of an experimental microbial community, we examined how the architectural features of facilitative interaction networks could change through time. A metabolic modeling approach for estimating dependence between microbial genomes (species) allowed us to infer the network structure of potential facilitative interactions at 13 time points through the 110-day monitoring of experimental microbiomes. We then found that positive feedback loops, which were theoretically predicted to promote cascade breakdown of ecological communities, existed within the inferred networks of metabolic interactions prior to the drastic community-compositional shift observed in the microbiome time-series. We further applied "directed-graph" analyses to pinpoint potential keystone species located at the "upper stream" positions of such feedback loops. These analyses on facilitative interactions will help us understand key mechanisms causing catastrophic shifts in microbial community structure.
RESUMO
Species utilizing the same resources often fail to coexist for extended periods of time. Such competitive exclusion mechanisms potentially underly microbiome dynamics, causing breakdowns of communities composed of species with similar genetic backgrounds of resource utilization. Although genes responsible for competitive exclusion among a small number of species have been investigated in pioneering studies, it remains a major challenge to integrate genomics and ecology for understanding stable coexistence in species-rich communities. Here, we examine whether community-scale analyses of functional gene redundancy can provide a useful platform for interpreting and predicting collapse of bacterial communities. Through 110-day time-series of experimental microbiome dynamics, we analyzed the metagenome-assembled genomes of co-occurring bacterial species. We then inferred ecological niche space based on the multivariate analysis of the genome compositions. The analysis allowed us to evaluate potential shifts in the level of niche overlap between species through time. We hypothesized that community-scale pressure of competitive exclusion could be evaluated by quantifying overlap of genetically determined resource-use profiles (metabolic pathway profiles) among coexisting species. We found that the degree of community compositional changes observed in the experimental microbiome was correlated with the magnitude of gene-repertoire overlaps among bacterial species, although the causation between the two variables deserves future extensive research. The metagenome-based analysis of genetic potential for competitive exclusion will help us forecast major events in microbiome dynamics such as sudden community collapse (i.e., dysbiosis).
RESUMO
Recent studies have revealed the importance of feedbacks between contemporary rapid evolution (i.e. evolution that occurs through changes in allele frequencies) and ecological dynamics. Despite its inherent interdisciplinary nature, however, studies on eco-evolutionary feedbacks have been mostly ecological and tended to focus on adaptation at the phenotypic level without considering the genetic architecture of evolutionary processes. In empirical studies, researchers have often compared ecological dynamics when the focal species under selection has a single genotype with dynamics when it has multiple genotypes. In theoretical studies, common approaches are models of quantitative traits where mean trait values change adaptively along the fitness gradient and Mendelian traits with two alleles at a single locus. On the other hand, it is well known that genetic architecture can affect short-term evolutionary dynamics in population genetics. Indeed, recent theoretical studies have demonstrated that genetic architecture (e.g. the number of loci, linkage disequilibrium and ploidy) matters in eco-evolutionary dynamics (e.g. evolutionary rescue where rapid evolution prevents extinction and population cycles driven by (co)evolution). I propose that theoretical approaches will promote the synthesis of functional genomics and eco-evolutionary dynamics through models that combine population genetics and ecology as well as nonlinear time-series analyses using emerging big data. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.