Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(6): 1316-1325.e12, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29129375

RESUMO

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Regiões Promotoras Genéticas
2.
Proc Natl Acad Sci U S A ; 120(35): e2300446120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37611056

RESUMO

Nitrate distribution in soils is often heterogeneous. Plants have adapted to this by modifying their root system architecture (RSA). Previous studies showed that NITRATE-TRANSPORTER1.1 (NRT1.1), which also transports auxin, helps inhibit lateral root primordia (LRP) emergence in nitrate-poor patches, by preferentially transporting auxin away from the LRP. In this study, we identified the regulatory system for this response involving the transcription factor (TF), SENSITIVE-TO-PROTON-RHIZOTOXICITY1 (STOP1), which is accumulated in the nuclei of LRP cells under nitrate deficiency and directly regulates Arabidopsis NRT1.1 expression. Mutations in STOP1 mimic the root phenotype of the loss-of-function NRT1.1 mutant under nitrate deficiency, compared to wild-type plants, including increased LR growth and higher DR5promoter activity (i.e., higher LRP auxin signaling/activity). Nitrate deficiency-induced LR growth inhibition was almost completely reversed when STOP1 and the TF, TEOSINTE-BRANCHED1,-CYCLOIDEA,-PCF-DOMAIN-FAMILY-PROTEIN20 (TCP20), a known activator of NRT1.1 expression, were both mutated. Thus, the STOP1-TCP20 system is required for activation of NRT1.1 expression under nitrate deficiency, leading to reduced LR growth in nitrate-poor regions. We found this STOP1-mediated system is more active as growth media becomes more acidic, which correlates with reductions in soil nitrate as the soil pH becomes more acidic. STOP1 has been shown to be involved in RSA modifications in response to phosphate deficiency and increased potassium uptake, hence, our findings indicate that root growth regulation in response to low availability of the major fertilizer nutrients, nitrogen, phosphorus and potassium, all involve STOP1, which may allow plants to maintain appropriate root growth under the complex and varying soil distribution of nutrients.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nitratos , Fatores de Transcrição/genética , Arabidopsis/genética , Transporte Biológico , Ácidos Indolacéticos , Proteínas de Plantas , Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética
3.
Plant Physiol ; 195(4): 2937-2951, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38805221

RESUMO

Heme, an organometallic tetrapyrrole, is widely engaged in oxygen transport, electron delivery, enzymatic reactions, and signal transduction. In plants, it is also involved in photomorphogenesis and photosynthesis. HEME OXYGENASE 1 (HO1) initiates the first committed step in heme catabolism, and it has generally been thought that this reaction takes place in chloroplasts. Here, we show that HO1 in both Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) has 2 transcription start sites (TSSs), producing long (HO1L) and short (HO1S) transcripts. Their products localize to the chloroplast and the cytosol, respectively. During early development or de-etiolation, the HO1L/HO1S ratio gradually increases. Light perception via phytochromes (Phys) and cryptochromes elevates the HO1L/HO1S ratio in the whole seedling through the functions of ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG and through the suppression of DE-ETIOLATED 1, CONSTITUTIVE PHOTOMORPHOGENESIS 1, and PHYTOCHROME INTERACTING FACTORs. HO1L introduction complements the HO1-deficient mutant; surprisingly, HO1S expression also restores the short hypocotyl phenotype and high pigment content and helps the mutant recover from the genomes uncoupled (gun) phenotype. This indicates the assembly of functional Phys within these lines. Furthermore, our findings support the hypothesis that a mobile heme signal is involved in retrograde signaling from the chloroplast. Altogether, our work clarifies the molecular mechanism of HO1 TSS regulation and highlights the presence of a cytosolic bypass for heme catabolism in plant cells.


Assuntos
Arabidopsis , Citosol , Regulação da Expressão Gênica de Plantas , Heme Oxigenase-1 , Heme , Oryza , Heme/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/enzimologia , Citosol/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Cloroplastos/metabolismo , Células Vegetais/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Luz
4.
J Med Internet Res ; 26: e49669, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861313

RESUMO

BACKGROUND: Sleep disturbance is a major contributor to future health and occupational issues. Mobile health can provide interventions that address adverse health behaviors for individuals in a vulnerable health state in real-world settings (just-in-time adaptive intervention). OBJECTIVE: This study aims to identify a subpopulation with vulnerable sleep state in daily life (study 1) and, immediately afterward, to test whether providing mobile health intervention improved habitual sleep behaviors and psychological wellness in real-world settings by conducting a microrandomized trial (study 2). METHODS: Japanese workers (n=182) were instructed to collect data on their habitual sleep behaviors and momentary symptoms (including depressive mood, anxiety, and subjective sleep quality) using digital devices in a real-world setting. In study 1, we calculated intraindividual mean and variability of sleep hours, midpoint of sleep, and sleep efficiency to characterize their habitual sleep behaviors. In study 2, we designed and conducted a sleep just-in-time adaptive intervention, which delivered objective push-type sleep feedback messages to improve their sleep hours for a subset of participants in study 1 (n=81). The feedback messages were generated based on their sleep data measured on previous nights and were randomly sent to participants with a 50% chance for each day (microrandomization). RESULTS: In study 1, we applied hierarchical clustering to dichotomize the population into 2 clusters (group A and group B) and found that group B was characterized by unstable habitual sleep behaviors (large intraindividual variabilities). In addition, linear mixed-effect models showed that the interindividual variability of sleep hours was significantly associated with depressive mood (ß=3.83; P=.004), anxiety (ß=5.70; P=.03), and subjective sleep quality (ß=-3.37; P=.03). In study 2, we found that providing sleep feedback prolonged subsequent sleep hours (increasing up to 40 min; P=.01), and this effect lasted for up to 7 days. Overall, the stability of sleep hours in study 2 was significantly improved among participants in group B compared with the participants in study 1 (P=.001). CONCLUSIONS: This is the first study to demonstrate that providing sleep feedback can benefit the modification of habitual sleep behaviors in a microrandomized trial. The findings of this study encourage the use of digitalized health intervention that uses real-time health monitoring and personalized feedback.


Assuntos
Sono , Humanos , Adulto , Masculino , Japão , Feminino , Pessoa de Meia-Idade , Telemedicina , Qualidade do Sono , População do Leste Asiático
5.
Plant J ; 108(1): 29-39, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252235

RESUMO

In gene-trap screening of plant genomes, promoterless reporter constructs are often expressed without trapping of annotated gene promoters. The molecular basis of this phenomenon, which has been interpreted as the trapping of cryptic promoters, is poorly understood. Here, we found that cryptic promoter activation occurs by at least two different mechanisms using Arabidopsis gene-trap lines in which a firefly luciferase (LUC) open reading frame (ORF) without an apparent promoter sequence was expressed from intergenic regions: one mechanism is 'cryptic promoter capturing', in which the LUC ORF captured pre-existing promoter-like chromatin marked by H3K4me3 and H2A.Z, and the other is 'promoter de novo origination', in which the promoter chromatin was newly formed near the 5' end of the inserted LUC ORF. The latter finding raises a question as to how the inserted LUC ORF sequence is involved in this phenomenon. To examine this, we performed a model experiment with chimeric LUC genes in transgenic plants. Using Arabidopsis psaH1 promoter-LUC constructs, we found that the functional core promoter region, where transcription start sites (TSSs) occur, cannot simply be determined by the upstream nor core promoter sequences; rather, its positioning proximal to the inserted LUC ORF sequence was more critical. This result suggests that the insertion of the coding sequence alters the local distribution of TSSs in the plant genome. The possible impact of the two types of cryptic promoter activation mechanisms on plant genome evolution and endosymbiotic gene transfer is discussed.


Assuntos
Arabidopsis/genética , Montagem e Desmontagem da Cromatina/genética , Genoma de Planta/genética , Regiões Promotoras Genéticas/genética , Cromatina/genética , Fases de Leitura Aberta/genética , Plantas Geneticamente Modificadas , Sítio de Iniciação de Transcrição
6.
Plant Physiol ; 182(4): 1894-1909, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32024696

RESUMO

Nitrogen (N) is an essential macronutrient, and the final form of endogenous inorganic N is ammonium, which is assimilated by Gln synthetase (GS) into Gln. However, how the multiple isoforms of cytosolic GSs contribute to metabolic systems via the regulation of ammonium assimilation remains unclear. In this study, we compared the effects of two rice (Oryza sativa) cytosolic GSs, namely OsGS1;1 and OsGS1;2, on central metabolism in roots using reverse genetics, metabolomic and transcriptomic profiling, and network analyses. We observed (1) abnormal sugar and organic N accumulation and (2) significant up-regulation of genes associated with photosynthesis and chlorophyll biosynthesis in the roots of Osgs1;1 but not Osgs1;2 knockout mutants. Network analysis of the Osgs1;1 mutant suggested that metabolism of Gln was coordinated with the metabolic modules of sugar metabolism, tricarboxylic acid cycle, and carbon fixation. Transcript profiling of Osgs1;1 mutant roots revealed that expression of the rice sigma-factor (OsSIG) genes in the mutants were transiently upregulated. GOLDEN2-LIKE transcription factor-encoding genes, which are involved in chloroplast biogenesis in rice, could not compensate for the lack of OsSIGs in the Osgs1;1 mutant. Microscopic analysis revealed mature chloroplast development in Osgs1;1 roots but not in the roots of Osgs1;2, Osgs1;2-complemented lines, or the wild type. Thus, organic N assimilated by OsGS1;1 affects a broad range of metabolites and transcripts involved in maintaining metabolic homeostasis and plastid development in rice roots, whereas OsGS1;2 has a more specific role, affecting mainly amino acid homeostasis but not carbon metabolism.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato-Amônia Ligase/genética , Nitrogênio/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
7.
J Exp Bot ; 72(7): 2769-2789, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33481007

RESUMO

Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.


Assuntos
Alumínio/toxicidade , Proteínas de Arabidopsis , Arabidopsis , Alumínio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato Desidrogenase , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
8.
Plant Physiol ; 180(3): 1629-1646, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064811

RESUMO

Hydrogen peroxide (H2O2) is a common signal molecule initiating transcriptional responses to all the known biotic and abiotic stresses of land plants. However, the degree of involvement of H2O2 in these stress responses has not yet been well studied. Here we identify time-dependent transcriptome profiles stimulated by H2O2 application in Arabidopsis (Arabidopsis thaliana) seedlings. Promoter prediction based on transcriptome data suggests strong crosstalk among high light, heat, and wounding stress responses in terms of environmental stresses and between the abscisic acid (ABA) and salicylic acid (SA) responses in terms of phytohormone signaling. Quantitative analysis revealed that ABA accumulation is induced by H2O2 but SA is not, suggesting that the implied crosstalk with ABA is achieved through ABA accumulation while the crosstalk with SA is different. We identified potential direct regulatory pairs between regulator transcription factor (TF) proteins and their regulated TF genes based on the time-course transcriptome analysis for the H2O2 response, in vivo regulation of the regulated TF by the regulator TF identified by expression analysis of mutants and overexpressors, and in vitro binding of the regulator TF protein to the target TF promoter. These analyses enabled the establishment of part of the transcriptional regulatory network for the H2O2 response composed of 15 regulatory pairs of TFs, including five pairs previously reported. This regulatory network is suggested to be involved in a wide range of biotic and abiotic stress responses in Arabidopsis.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes , Peróxido de Hidrogênio/farmacologia , Plântula/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Peróxido de Hidrogênio/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética
9.
Gastrointest Endosc ; 92(3): 715-722.e1, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492377

RESUMO

BACKGROUND AND AIMS: Cold snare polypectomy (CSP) of small colorectal polyps is widely used. However, the technique is still troubled by insufficient resection depth, which may prevent precise pathologic evaluation. In this study, we investigated whether submucosal injection of saline solution helps to achieve deeper resection in CSP. METHODS: The study was a single-center, prospective, randomized trial. Patients with small (3- to 10-mm diameter) nonpedunculated adenomatous or sessile serrated colorectal polyps were randomly allocated to either conventional CSP (C-CSP) or CSP with submucosal injection (CSP-SI). Primary outcome was the rate of complete muscularis mucosae (MM) resection, defined by the proportion of MM under the tumor more than 80% of the tumor's horizontal dimension. Secondary outcomes were the rates of negative lateral and vertical margins, fragmentation of resected specimens, conversion to hot snare mucosal resection, intraprocedural bleeding, delayed bleeding, and perforation. RESULTS: Two hundred fourteen patients were randomly assigned to the CSP-SI (n = 107) or C-CSP (n = 107) group. The rate of complete MM resection was 43.9% in the CSP-SI group and 53.3% in the C-CSP group, a statistically insignificant difference. The rates of negative lateral margin and vertical margin (42.3% and 56.7%, respectively) in the CSP-SI group were significantly lower than those (58% and 76%) in the C-CSP group (P = .03 and P = .006, respectively). There was no polypectomy-related major bleeding or perforation. CONCLUSIONS: Saline solution injection into the submucosa did not improve the resection depth of CSP of small colorectal polyps, and the method resulted in lower rates of negative lateral and vertical margins of resected lesions. (Clinical trial registration number: UMIN000037980.).


Assuntos
Pólipos do Colo , Pólipos do Colo/cirurgia , Colonoscopia , Humanos , Margens de Excisão , Estudos Prospectivos , Solução Salina
10.
Plant J ; 94(3): 439-453, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29430765

RESUMO

In mammalian cells, the transcription factor p53 plays a crucial role in transmitting DNA damage signals to maintain genome integrity. However, in plants, orthologous genes for p53 and checkpoint proteins are absent. Instead, the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) controls most of the genes induced by gamma irradiation and promotes DNA repair, cell cycle arrest, and stem cell death. To date, the genes directly controlled by SOG1 remain largely unknown, limiting the understanding of DNA damage signaling in plants. Here, we conducted a microarray analysis and chromatin immunoprecipitation (ChIP)-sequencing, and identified 146 Arabidopsis genes as direct targets of SOG1. By using ChIP-sequencing data, we extracted the palindromic motif [CTT(N)7 AAG] as a consensus SOG1-binding sequence, which mediates target gene induction in response to DNA damage. Furthermore, DNA damage-triggered phosphorylation of SOG1 is required for efficient binding to the SOG1-binding sequence. Comparison between SOG1 and p53 target genes showed that both transcription factors control genes responsible for cell cycle regulation, such as CDK inhibitors, and DNA repair, whereas SOG1 preferentially targets genes involved in homologous recombination. We also found that defense-related genes were enriched in the SOG1 target genes. Consistent with this finding, SOG1 is required for resistance against the hemi-biotrophic fungus Colletotrichum higginsianum, suggesting that SOG1 has a unique function in controlling the immune response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Dano ao DNA/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Reparo do DNA/genética , Genes p53/genética , Sequências Repetidas Invertidas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação
11.
Plant Cell Physiol ; 60(9): 2113-2126, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241160

RESUMO

The transcription factor sensitive to proton rhizotoxicity 1 (STOP1) regulates multiple stress tolerances. In this study, we confirmed its involvement in NaCl and drought tolerance. The root growth of the T-DNA insertion mutant of STOP1 (stop1) was sensitive to NaCl-containing solidified MS media. Transcriptome analysis of stop1 under NaCl stress revealed that STOP1 regulates several genes related to salt tolerance, including CIPK23. Among all available homozygous T-DNA insertion mutants of the genes suppressed in stop1, only cipk23 showed a NaCl-sensitive root growth phenotype comparable to stop1. The CIPK23 promoter had a functional STOP1-binding site, suggesting a strong CIPK23 suppression led to NaCl sensitivity of stop1. This possibility was supported by in planta complementation of CIPK23 in the stop1 background, which rescued the short root phenotype under NaCl. Both stop1 and cipk23 exhibited a drought tolerant phenotype and increased abscisic acid-regulated stomatal closure, while the complementation of CIPK23 in stop1 reversed these traits. Our findings uncover additional pleiotropic roles of STOP1 mediated by CIPK23, which regulates various ion transporters including those regulating K+-homeostasis, which may induce a trade-off between drought tolerance and other traits.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Prótons/efeitos adversos , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Secas , Proteínas Serina-Treonina Quinases/genética , Tolerância ao Sal , Estresse Fisiológico , Fatores de Transcrição/genética
12.
J Exp Bot ; 70(12): 3297-3311, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30882866

RESUMO

The SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) transcription factor regulates gene expression associated with multiple stress tolerances in plant roots. In this study, we investigated the mechanism responsible for the sensitivity of the stop1 mutant to low-oxygen stress in Arabidopsis. Transcriptomic analyses revealed that two genes involved in low-oxygen tolerance, namely GLUTAMATE DEHYDROGENASE 1 (GDH1) and GDH2, showed lower expression levels in the stop1 mutant than in the wild-type. Sensitivity of the gdh1gdh2 double-mutant to low-oxygen conditions was partly attributable to the low-oxygen sensitivity of the stop1 mutant. Two transcription factors, STOP2 and HEAT SHOCK FACTOR A2 (HsfA2), were expressed at lower levels in the stop1 mutant. An in planta complementation assay indicated that CaMV35S::STOP2 or CaMV35S::HsfA2 partially rescued the low-oxygen tolerance of the stop1 mutant, which was concomitant with recovered expression of genes regulating low-pH tolerance and genes encoding molecular chaperones. Prediction of cis-elements and in planta promoter assays revealed that STOP1 directly activated the expression of HsfA2. Similar STOP1-dependent low-oxygen sensitivity was detected in tobacco. Suppression of NtSTOP1 induced low-oxygen sensitivity, which was associated with lower expression levels of NtHsfA2 and NtGDHs compared with the wild-type. Our results indicated that STOP1 pleiotropically regulates low-oxygen tolerance by transcriptional regulation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição de Choque Térmico/genética , Oxigênio/metabolismo , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição/metabolismo
13.
Thorac Cardiovasc Surg ; 67(4): 306-314, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29843187

RESUMO

BACKGROUND: In the eighth edition of the TNM classification, the lung tumors that have the same solid components are categorized either as part-solid or pure-solid tumors. However, this is debatable since the tumors in the same T component categories were evaluated without considering this categorization, and was based on a more malignant behavior and a poorer prognosis of pure-solid tumors. The aim of this study was to investigate and compare the prognosis between part-solid and pure-solid tumors. METHODS: We retrospectively analyzed 530 patients who were diagnosed with clinical-T1a-cN0M0 non-small-cell lung cancer (NSCLC) and were treated surgically. The subjects were divided into part-solid and pure-solid tumor groups using thin-section computed tomography. The prognosis was compared between the groups. RESULTS: Although relapse-free survival (RFS) was significantly shorter in the pure-solid tumor group (p = 0.016), no significant differences were observed in the overall survival (OS) between the two groups (p = 0.247). In 137 propensity score-matched pairs, including variables such as age, gender, Brinkman index, body mass index, forced expiratory volume in 1 second/forced vital capacity, Charlson comorbidity index, carcinoembryonic antigen levels, clinical-T status, surgical procedure, and extent of surgery, no significant differences were seen in the RFS and OS between the two groups (p = 0.709 and p = 0.517, respectively). CONCLUSION: In the eighth edition of the TNM classification of clinical-T1a-cN0M0 NSCLC, the prognosis of part-solid and pure-solid tumors showed no significant differences. Solid component size of the tumor is considered important prognostic factor in early-stage NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Pneumonectomia/métodos , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Estudos Retrospectivos , Fatores de Risco , Cirurgia Torácica Vídeoassistida , Tomografia Computadorizada por Raios X
14.
Plant J ; 90(3): 587-605, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214361

RESUMO

Information about transcription start sites (TSSs) provides baseline data for the analysis of promoter architecture. In this paper we used paired- and single-end deep sequencing to analyze Arabidopsis TSS tags from several libraries prepared from roots, shoots, flowers and etiolated seedlings. The clustering of approximately 33 million mapped TSS tags led to the identification of 324 461 promoters that covered 79.7% (21 672/27 206) of protein-coding genes in the Arabidopsis genome. In addition we identified intragenic, antisense and orphan promoters that were not associated with any gene models. Of these, intragenic promoters exhibited unique characteristics regarding dinucleotide sequences at TSSs and core promoter element composition, suggesting that these promoters use different mechanisms of transcriptional initiation. An analysis of base composition with regard to promoter position revealed a low GC content throughout the promoter region and several local strand biases that were evident for TATA-type promoters, but not for Coreless-type promoters. Most observed strand biases coincided with strand biases of single nucleotide polymorphism rate. Our analysis also revealed that transcription of a gene is supported by an average of 2.7 genic promoters, among which one specific promoter, designated as a top promoter, substantially determines the expression level of the gene.


Assuntos
Arabidopsis/genética , Regiões Promotoras Genéticas/genética , Sítio de Iniciação de Transcrição/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
15.
Plant J ; 89(4): 671-680, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862521

RESUMO

Interactions between heat shock (HS) factors (HSFs) and heat shock response elements (HSEs) are important during the heat shock response (HSR) of flora and fauna. Moreover, plant HSFs that are involved in heat stress are also involved in abiotic stresses such as dehydration and cold as well as development, cell differentiation and proliferation. Because the specific combination of HSFs and HSEs involved in plants under heat stress remains unclear, the mechanism of their interaction has not yet been utilized in molecular breeding of plants for climate change. For the study reported herein, we compared the sequences of HS-inducible genes and their promoters in Arabidopsis, soybean, rice and maize and then designed an optimal HS-inducible promoter. Our analyses suggest that, for the four species, the abscisic acid-independent, HSE/HSF-dependent transcriptional pathway plays a major role in HS-inducible gene expression. We found that an 18-bp sequence that includes the HSE has an important role in the HSR, and that those sequences could be classified as representative of monocotyledons or dicotyledons. With the HS-inducible promoter designed based on our bioinformatic predictions, we were able to develop an optimal HS-specific inducible promoter for seedlings or single cells in roots. These findings demonstrate the utility of our HS-specific inducible promoter, which we expect will contribute to molecular breeding efforts and cell-targeted gene expression in specific plant tissues.


Assuntos
Arabidopsis/genética , Glycine max/genética , Oryza/genética , Regiões Promotoras Genéticas/genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
16.
Planta ; 247(1): 201-214, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28921050

RESUMO

MAIN CONCLUSION: Al-responsive citrate-transporting CcMATE1 function and its regulation by CcSTOP1 were analyzed using NtSTOP1 -KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence of CcMATE1 showed similarity with AtALMT1 promoter. The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3' sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3' flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.


Assuntos
Alumínio/toxicidade , Cajanus/fisiologia , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Dedos de Zinco CYS2-HIS2 , Cajanus/efeitos dos fármacos , Cajanus/genética , Ácidos Carboxílicos/metabolismo , Proteínas de Transporte/genética , Ácido Cítrico/metabolismo , Resistência a Medicamentos/genética , Genes Reporter , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética
17.
Angew Chem Int Ed Engl ; 57(8): 2229-2232, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-28929558

RESUMO

The enantioselective total synthesis of (+)-gracilamine (1) is described. The strategy features a diastereoselective phenolic coupling reaction followed by a regioselective intramolecular aza-Michael reaction to construct the ABCE ring system. The configuration at C3a in 1 was controlled by the stereocenter at C9a, which was selectively generated (91 % ee) by an organocatalytic enantioselective aza-Friedel-Crafts reaction developed by our research group. This synthesis revealed that the absolute configuration of (+)-gracilamine is 3aR, 4S, 5S, 6R, 7aS, 8R, 9aS.

18.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28768888

RESUMO

The theory of critical transitions in complex systems (ecosystems, climate, etc.), and especially its ability to predict abrupt changes by early-warning signals based on analysis of fluctuations close to tipping points, is seen as a promising avenue to study disease dynamics. However, the biomedical field still lacks a clear demonstration of this concept. Here, we used a well-established animal model in which initial alcohol exposure followed by deprivation and subsequent reintroduction of alcohol induces excessive alcohol drinking as an example of disease onset. Intensive longitudinal data (ILD) of rat drinking behaviour and locomotor activity were acquired by a fully automated drinkometer device over 14 weeks. Dynamical characteristics of ILD were extracted using a multi-scale computational approach. Our analysis shows a transition into addictive behaviour preceded by early-warning signals such as instability of drinking patterns and locomotor circadian rhythms, and a resultant increase in low frequency, ultradian rhythms during the first week of deprivation. We find evidence that during prolonged deprivation, a critical transition takes place pushing the system to excessive alcohol consumption. This study provides an adaptable framework for processing ILD from clinical studies and for examining disease dynamics and early-warning signals in the biomedical field.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Comportamento Aditivo/fisiopatologia , Ritmo Circadiano , Locomoção , Ritmo Ultradiano , Animais , Ratos
19.
Europace ; 19(8): 1392-1400, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789562

RESUMO

AIMS: Cyclic variation of heart rate (CVHR) associated with sleep-disordered breathing is thought to reflect cardiac autonomic responses to apnoeic/hypoxic stress. We examined whether blunted CVHR observed in ambulatory ECG could predict the mortality risk. METHODS AND RESULTS: CVHR in night-time Holter ECG was detected by an automated algorithm, and the prognostic relationships of the frequency (FCV) and amplitude (ACV) of CVHR were examined in 717 patients after myocardial infarction (post-MI 1, 6% mortality, median follow-up 25 months). The predictive power was prospectively validated in three independent cohorts: a second group of 220 post-MI patients (post-MI 2, 25.5% mortality, follow-up 45 months); 299 patients with end-stage renal disease on chronic haemodialysis (ESRD, 28.1% mortality, follow-up 85 months); and 100 patients with chronic heart failure (CHF, 35% mortality, follow-up 38 months). Although CVHR was observed in ≥96% of the patients in all cohorts, FCV did not predict mortality in any cohort. In contrast, decreased ACV was a powerful predictor of mortality in the post-MI 1 cohort (hazard ratio [95% CI] per 1 ln [ms] decrement, 2.9 [2.2-3.7], P < 0.001). This prognostic relationship was validated in the post-MI 2 (1.8 [1.4-2.2], P < 0.001), ESRD (1.5 [1.3-1.8], P < 0.001), and CHF (1.4 [1.1-1.8], P = 0.02) cohorts. The prognostic value of ACV was independent of age, gender, diabetes, ß-blocker therapy, left ventricular ejection fraction, sleep-time mean R-R interval, and FCV. CONCLUSION: Blunted CVHR detected by decreased ACV in a night-time Holter ECG predicts increased mortality risk in post-MI, ESRD, and CHF patients.


Assuntos
Ritmo Circadiano , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca , Falência Renal Crônica/mortalidade , Falência Renal Crônica/fisiopatologia , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/fisiopatologia , Antagonistas Adrenérgicos beta/uso terapêutico , Idoso , Algoritmos , Doença Crônica , Eletrocardiografia Ambulatorial , Feminino , Grécia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos , Japão , Estimativa de Kaplan-Meier , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/terapia , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Diálise Renal , Reprodutibilidade dos Testes , Fatores de Risco , Processamento de Sinais Assistido por Computador , Volume Sistólico , Fatores de Tempo , Função Ventricular Esquerda
20.
Plant Physiol ; 167(3): 991-1003, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25627216

RESUMO

In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Transportadores de Ânions Orgânicos/metabolismo , Fatores de Transcrição/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Glucuronidase/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Transportadores de Ânions Orgânicos/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa