Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 55, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383481

RESUMO

BACKGROUND: Neuroinflammation substantially contributes to the pathology of Alzheimer's disease (AD), the most common form of dementia. Studies have reported that nuclear factor erythroid 2-related factor 2 (Nrf2) attenuates neuroinflammation in the mouse models of neurodegenerative diseases, however, the detailed mechanism remains unclear. METHODS: The effects of dimethyl fumarate (DMF), a clinically used drug to activate the Nrf2 pathway, on neuroinflammation were analyzed in primary astrocytes and AppNL-G-F (App-KI) mice. The cognitive function and behavior of DMF-administrated App-KI mice were evaluated. For the gene expression analysis, microglia and astrocytes were directly isolated from the mouse cerebral cortex by magnetic-activated cell sorting, followed by quantitative PCR. RESULTS: DMF treatment activated some Nrf2 target genes and inhibited the expression of proinflammatory markers in primary astrocytes. Moreover, chronic oral administration of DMF attenuated neuroinflammation, particularly in astrocytes, and reversed cognitive dysfunction presumably by activating the Nrf2-dependent pathway in App-KI mice. Furthermore, DMF administration inhibited the expression of STAT3/C3 and C3 receptor in astrocytes and microglia isolated from App-KI mice, respectively, suggesting that the astrocyte-microglia crosstalk is involved in neuroinflammation in mice with AD. CONCLUSION: The activation of astrocytic Nrf2 signaling confers neuroprotection in mice with AD by controlling neuroinflammation, particularly by regulating astrocytic C3-STAT3 signaling. Furthermore, our study has implications for the repositioning of DMF as a drug for AD treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Camundongos Transgênicos , Doenças Neuroinflamatórias , Fator 2 Relacionado a NF-E2/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças
2.
Acta Neuropathol ; 147(1): 84, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750212

RESUMO

Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Proteínas de Ligação a DNA , Proteínas Mitocondriais , Fatores de Transcrição , Feminino , Humanos , Masculino , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/patologia , Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
FEBS Open Bio ; 14(2): 162-164, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38217066

RESUMO

Koji Yamanaka is a Professor at the Research Institute of Environmental Medicine at Nagoya University of Japan. His research interests lie in understanding the mechanism of onset and progression of motor neuron disease as well as the role of glial cells in Alzheimer's disease neuroinflammation. Koji has been serving on the FEBS Open Bio Editorial Board since 2013. In this interview, he explains the implications of recent findings in neurobiology for amyotrophic lateral sclerosis, provides updates on the research environment in Japan and discusses how editors might use their position to positively influence academic culture.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Masculino , Esclerose Lateral Amiotrófica/genética
4.
iScience ; 27(2): 108872, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318390

RESUMO

Recent single-cell analyses have revealed the complexity of microglial heterogeneity in brain development, aging, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Disease-associated microglia (DAMs) have been identified in ALS mice model, but their role in ALS pathology remains unclear. The effect of genetic background variations on microglial heterogeneity and functions remains unknown. Herein, we established and analyzed two mice models of ALS with distinct genetic backgrounds of C57BL/6 and BALB/c. We observed that the change in genetic background from C57BL/6 to BALB/c affected microglial heterogeneity and ALS pathology and its progression, likely due to the defective induction of neurotrophic factor-secreting DAMs and impaired microglial survival. Single-cell analyses of ALS mice revealed new markers for each microglial subtype and a possible association between microglial heterogeneity and systemic immune environments. Thus, we highlighted the role of microglia in ALS pathology and importance of genetic background variations in modulating microglial functions.

5.
Sci Rep ; 14(1): 12118, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802492

RESUMO

Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.


Assuntos
Esclerose Lateral Amiotrófica , Azóis , Isoindóis , Compostos Organosselênicos , Superóxido Dismutase-1 , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Animais , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Isoindóis/farmacologia , Camundongos , Azóis/farmacologia , Humanos , Camundongos Transgênicos , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
6.
Free Radic Biol Med ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39155026

RESUMO

Hyponatremia is the most common clinical electrolyte disorder. Chronic hyponatremia has been recently reported to be associated with falls, fracture, osteoporosis, neurocognitive impairment, and mental manifestations. In the treatment of chronic hyponatremia, overly rapid correction of hyponatremia can cause osmotic demyelination syndrome (ODS), a central demyelinating disease that is also associated with neurological morbidity and mortality. Using a rat model, we have previously shown that microglia play a critical role in the pathogenesis of ODS. However, the direct effect of rapid correction of hyponatremia on microglia is unknown. Furthermore, the effect of chronic hyponatremia on microglia remains elusive. Using microglial cell lines BV-2 and 6-3, we show here that low extracellular sodium concentrations (36 mmol/L decrease; LS) suppress Nos2 mRNA expression and nitric oxide (NO) production of microglia. On rapid correction of low sodium concentrations, NO production was significantly increased in both cells, suggesting that acute correction of hyponatremia partly directly contributes to increased Nos2 mRNA expression and NO release in ODS pathophysiology. LS also suppressed expression and nuclear translocation of nuclear factor of activated T cells-5 (NFAT5), a transcription factor that regulates the expression of genes involved in osmotic stress. Furthermore, overexpression of NFAT5 significantly increased Nos2 mRNA expression and NO production in BV-2 cells. Expressions of Nos2 and Nfat5 mRNA were also modulated in microglia isolated from cerebral cortex in chronic hyponatremia model mice. These data indicate that LS modulates microglial NO production dependent on NFAT5 and suggest that microglia contribute to hyponatremia-induced neuronal dysfunctions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa