Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nano Lett ; 23(24): 11548-11554, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38063468

RESUMO

Single-photon emissions from individual emitters are crucial in fundamental science and quantum information technologies. Multichromophoric systems, comprising multiple dyes, can exhibit single-photon emissions through efficient annihilation between the excited states; however, exploring this phenomenon in complex systems remains a challenge. In this study, we investigated the photon statistics of emissions from multiple perylene bisimide (PBI) dyes adsorbed onto the surface of CdSe/ZnS quantum dots (QDs). When multiple PBIs were simultaneously excited by both direct excitation and energy transfer from the QD, multiphoton emissions from the PBIs were observed. Conversely, when the QDs were selectively excited, multiple PBIs exhibiting single-photon emission through energy transfer from the QDs to the PBIs were found. These results highlight the intriguing interplay between multichromophoric systems and QDs, offering valuable insights into the development of efficient single-photon sources in quantum information technologies.

2.
Angew Chem Int Ed Engl ; 63(1): e202314329, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37985221

RESUMO

Colloidal quantum dots (QDs) exhibit important photophysical properties, such as long-range energy diffusion, miniband formation, and collective photoluminescence, when aggregated into well-defined superstructures, such as three-dimensional (3D) and two-dimensional (2D) superlattices. However, the construction of one-dimensional (1D) QD superstructures, which have a simpler arrangement, is challenging; therefore, the photophysical properties of 1D-arranged QDs have not been studied previously. Herein, we report a versatile strategy to obtain 1D-arranged QDs using a supramolecular polymer (SP) template. The SP is composed of self-assembling cholesterol derivatives containing two amide groups for hydrogen bonding and a carboxyl group as an adhesion moiety on the QDs. Upon mixing the SP and dispersed QDs in low-polarity solvents, the QDs self-adhered to the SP and self-arranged into 1D superstructures through van der Waals interactions between the surface organic ligands of the QDs, as confirmed by transmission electron microscopy. Furthermore, we revealed efficient photoinduced fluorescence resonance energy transfer between the 1D-arranged QDs by an in-depth analysis of the emission spectra and decay curves.

3.
Angew Chem Int Ed Engl ; 60(12): 6473-6479, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33368995

RESUMO

Multicomponent supramolecular assembly systems enable the generation of materials with outstanding properties, not obtained from single-component systems, via a synergetic effect. Herein, we demonstrate a novel supramolecular coassembly system rendering highly ordered quantum dot (QD) arrangement structures formed via the self-assembly of azobenzene derivatives, where the photocontrollable photoluminescence (PL) properties of the QDs are realized based on photoisomerization. Upon mixing the assembled azobenzene derivatives and QDs in apolar media, a time-evolution coaggregation into hierarchical nanosheets with a highly ordered QD arrangement structure occurs. Upon photoirradiation, the nanosheets transform into ill-defined aggregates without arranged QDs together with enhancing the PL intensity. In days, the photoirradiated coaggregates undergo recovery of the PL properties corresponding to the arranged QDs through thermal isomerization.

4.
Chemistry ; 26(32): 7176-7184, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32101343

RESUMO

Colloidal semiconductor nanocrystals, known as quantum dots (QDs), are regarded as brightly photoluminescent nanomaterials possessing outstanding photophysical properties, such as high photodurability and tunable absorption and emission wavelengths. Therefore, QDs have great potential for a wide range of applications, such as in photoluminescent materials, biosensors and photovoltaic devices. Since the development of synthetic methods for accessing high-quality QDs with uniform morphology and size, various types of QDs have been designed and synthesized, and their photophysical properties dispersed in solutions and at the single QD level have been reported in detail. In contrast to dispersed QDs, the photophysical properties of assembled QDs have not been revealed, although the structures of the self-assemblies are closely related to the device performance of the solid-state QDs. Therefore, creating and controlling the self-assembly of QDs into well-defined nanostructures is crucial but remains challenging. In this Minireview, we discuss the notable examples of assembled QDs such as dimers, trimers and extended QD assemblies achieved using organic templates. This Minireview should facilitate future advancements in materials science related to the assembled QDs.

5.
Chemistry ; 26(66): 15079-15083, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32468654

RESUMO

The photo-induced generation of unstable molecules generally requires stringent conditions to prevent oxidation and the concomitant decomposition of the products. The visible-light-induced conversion of two heptacene precursors to heptacene was studied. Single crystals of bis- and mono-α-diketone-type heptacene precursors (7-DK2 and 7-DK1, respectively), were prepared to investigate the effect of precursor structure on reactivity. The photoirradiation of a 7-DK2 single crystal cleaved only one α-diketone group, forming an intermediate bearing a pentacene subunit, while that of a 7-DK1 single crystal gave rise to characteristic absorption peaks of heptacene and their increase in intensity with photoirradiation time, indicating the generation of heptacene without decomposition. Heptacene production was not observed when the precursors were photoirradiated in solution, implying that the single crystal interior provided isolation from the external environment, thus preventing heptacene oxidation.

6.
J Org Chem ; 85(1): 62-69, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31401831

RESUMO

We developed the diversity-oriented approach for the synthesis of tetrathia[8]circulenes with a variety of peripheral substituents. Iridium-catalyzed direct C-H borylation of tetrathienylene provided 1,4,7,10-tetraboryltetrathienylene as a major product. 1,4,7,10-Tetraboryltetrathienylene served as an a key intermediate to achieve the selective synthesis of octasubstituted or tetrasubstituted tetrathia[8]circulenes via rhodium-catalyzed annulation with symmetric internal alkynes or sequential Sonogashira-Hagihara coupling and base-promoted intramolecular cyclization. A variety of substituents were installed at the peripheral positions of tetrathia[8]circulenes systematically. The self-assembling behavior of tetrathia[8]circulenes was investigated using 1H NMR and AFM measurements. The number and the chain length of alkyl groups exerted a significant influence on the aggregation ability and the crystal packing structures of tetrathia[8]circulenes in both solution and solid states. We also found that the molecular arrangement of the self-assembled tetrathia[8]circulene molecules affected the hole mobility assessed by the FP-TRMC method.

7.
Chemistry ; 25(1): 167-172, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30398692

RESUMO

Colloidal semiconductor nanocrystals, so-called quantum dots (QDs), are attractive as molecular-like smart nanomaterials, and their emission and optoelectronic properties in the dispersed state have been actively studied. The construction of supramolecular structures composed of multiple QDs, however, is still challenging. Here, a new strategy to form supramolecular QD structures via self-assembly of perylene bisimide (PBI) dyes is demonstrated. In a mixed solution, QDs and PBI undergo time-dependent fusion to form an isolated colloidal QD-PBI complex or a unique QD-PBI co-aggregate composed of QDs arranged along a sheet-like PBI nanostructure, and these dramatically different supramolecular structures can be controlled by the solvent polarity.

8.
Phys Chem Chem Phys ; 21(12): 6348-6353, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30575827

RESUMO

Recently, we revealed that 6,13-dihydro-6,13-ethanopentacene-15,16-dione (PDK) could be quantitatively photoconverted into pentacene even in the crystal phase, accompanied by the destruction of the crystals. In this work, we investigated the relationship between the photoinduced morphological changes and the light intensity for the photoconversion at a single micrometre-sized crystal level. Photoirradiation with a strong intensity (over 100 kW cm-2) resulted in hole formation in a single crystal. When medium intensity (0.5-100 kW cm-2) was irradiated, destruction including separation and jumping of the crystal was observed. Absorption spectrum measurement of the single crystal revealed that when almost same number of pentacene was generated, the destruction was induced by the generated strain within crystal due to the stacking mismatch between the different molecules. Upon photoirradiation with a low intensity (below 0.5 kW cm-2), protruding pillar objects were observed on the crystal surface. This formation is a result of the surface movement of molecules through the relaxation of strain. Our results provide important insight into stimuli-responsive crystal materials and could contribute to the generation and application of remotely controllable smart materials.

9.
Angew Chem Int Ed Engl ; 58(40): 14173-14178, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353818

RESUMO

Most azobenzene derivatives are utilized as well-defined photoresponsive materials, but their emission properties have not been of great interest as they are relatively poor. Here, we report crystallization-induced emission (CIE) based on the suppression of the photoisomerization of azobenzene derivatives. Although these molecules show negligible emission in solution, their microcrystals exhibit intense emission from the azobenzene moieties as a result of CIE. Upon rapid precipitation, fine particles with low crystallinity were kinetically formed and underwent CIE over time with a concomitant increase in crystallinity. Furthermore, we demonstrated "photocutting" of an emissive single crystal using a strong laser by a combination of CIE behavior and photomelting based on the photoisomerization of the azobenzene moiety. Our results regarding the CIE behavior of azobenzene derivatives in addition to their photoisomerization can provide a new platform for developing photoresponsive luminescent materials.

10.
Chemistry ; 23(22): 5270-5280, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28120455

RESUMO

Intricately designed π-conjugated molecules containing interactive groups can be used to generate supramolecular polymers with outstanding structural and functional properties. To construct such supramolecular polymers, the non-covalent synthesis of supermacrocyclic monomers from relatively simple molecules represents an attractive strategy, although this has been rarely exploited. Here, we report the supramolecular polymerization of two barbiturate-naphthalene derivatives that circularly hexamerize by hydrogen bonding. The two molecules contain an aliphatic "wedge" unit with either an ether or ester linkage. This subtle difference is amplified into distinct features both in terms of the morphology of the supramolecular polymers and the polymerization process. The degrees of conformational freedom of the wedge unit determine the stacking of the supermacrocycles, as is evident from 2D X-ray diffraction analyses on the aligned fibers. The differences in stacking impart the supramolecular polymer fibers with different morphological features (cylindrical or helical), which are reflected in the properties of concentrated solutions (suspension or gel). The degrees of conformational freedom of the wedge unit also affect the polymerization kinetics, in which the more flexible ether linkage induces pathway complexity by the formation of off-pathway aggregates.

11.
Angew Chem Int Ed Engl ; 55(34): 9890-3, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27383466

RESUMO

Molecular self-assembly primarily occurs in solution. To better understand this process, techniques capable of probing the solvated state are consequently required. Small-angle scattering (SAS) has a proven ability to detect and characterize solutions, but it is rarely applied to more complex assembly shapes. Here, small-angle X-ray and neutron scattering are applied to observe toroidal assemblies in solution. Combined analysis confirms that the toroids have a core-shell structure, with a π-conjugated core and an alkyl shell into which solvent penetrates. The dimensions determined by SAS agree well with those obtained by (dried-state) atomic force microscopy. Increasing the number of naphthalene units in the molecular building block yields greater rigidity, as evidenced by a larger toroid and a reduction in solvent penetration into the shell. The detailed structural analysis demonstrates the applicability of SAS to monitor complex solution-based self-assembly.

12.
Angew Chem Int Ed Engl ; 53(10): 2602-6, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24573915

RESUMO

Diarylethenes (DAEs) have rarely been used in the design of photoresponsive supramolecular assemblies with a well-defined morphology transition owing to rather small structural changes upon photoisomerization. A supramolecular design based on the parallel conformation of DAEs enables the construction of photoresponsive dye assemblies that undergo remarkable nanomorphology transitions. The cooperative stacking of perylene bisimide (PBI) dyes was used to stabilize the parallel conformer of DAE through complementary hydrogen bonds. Atomic force microscopy, UV/Vis spectroscopy, and molecular modeling revealed that our DAE and PBI building blocks coassembled in nonpolar solvent to form well-defined helical nanofibers featuring J-type dimers of PBI dyes. Upon irradiating the coassembly solution with UV and visible light in turn, a reversible morphology change between nanofibers and nanoparticles was observed. This system involves the generation of a new self-assembly pathway by means of photocontrol.

13.
Macromol Rapid Commun ; 34(15): 1220-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23908127

RESUMO

A free-standing polymer brush film with tailored thicknesses based on a colorless polydopamine (PDA) thin layer is prepared and characterized. The surface-initiated atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate (HEMA) is performed on a PDA layer with thickness of ca. 6 nm, which generated an optically transparent and colorless free-standing PHEMA brush film (1.5 cm × 1.5 cm). Because the cross-linked PDA layer is used as the base for the polymer brushes, the reported method does not require cross-linking the polymer brushes. The free-standing film thicknesses of ≈16-75 nm are controlled by simply changing the ATRP reaction time. The results show that the free-standing PHEMA brush film transferred onto a plate exhibits a relatively smooth surface and is stable in any solvent.


Assuntos
Indóis/síntese química , Membranas Artificiais , Metacrilatos/síntese química , Polímeros/síntese química , Indóis/química , Metacrilatos/química , Polímeros/química
14.
J Phys Chem Lett ; 14(9): 2441-2447, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36862129

RESUMO

Emission photon statistics of semiconductor nanocrystal quantum dots (QDs), including lead halide perovskite nanocrystals (PNCs), are important fundamental and practical optical properties. Single QDs exhibit high-probability single-photon emission owing to the efficient Auger recombination between generated excitons. Because the recombination rate depends on QD size, single-photon emission probability should be size-dependent. Previous studies have researched QDs smaller than their exciton Bohr diameters (twice the Bohr radius of excitons). Here, we investigated the relationship between the single-photon emission behavior and size of CsPbBr3 PNCs to elucidate their size threshold. Simultaneous single-nanocrystal spectroscopy and atomic force microscopy observations on single PNCs with approximately 5-25 nm edge length showed that those smaller than approximately 10 nm, which had size-dependent photoluminescence (PL) spectral shifts, exhibited high-probability single-photon emissions, which decreased linearly with PNC volume. Novel single-photon emission, size, and PL peak correlations of PNCs are important for understanding the relationship between single-photon emission and quantum confinement.

15.
Org Lett ; 25(40): 7354-7358, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37772724

RESUMO

Molecular design strategy to control the crystal structure of two-dimensional (2D) π-extended organic semiconductors has not been intensively explored. We synthesized an unsymmetric tetrabenzoporphyrin derivative (TIPS-Ph-BP) to demonstrate the effect of molecular symmetry on crystal packing. TIPS-Ph-BP formed an antiparallel slipped π-stacking and 2D herringbone-like structure. An unsymmetric structure would make 2D π-stacking more stable than a one-dimensional (1D) columnar structure to counteract steric and electronic imbalance in the crystal. As a result, TIPS-Ph-BP achieved the high hole mobility of 0.71 cm2 V-1 s-1.

16.
J Am Chem Soc ; 134(44): 18205-8, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23083448

RESUMO

We report a precise control over the hierarchy levels in the outstanding self-organization process shown by chiral azobenzene dimer 1. This compound forms uniform toroidal nanostructures that can hierarchically organize into chiral nanotubes under the control by temperature, concentration, or light. The nanotubes further organized into supercoiled fibrils, which finally intertwined to form double helices with one-handed helical sense.


Assuntos
Compostos Azo/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dimerização , Nanotubos/química , Nanotubos/ultraestrutura , Estereoisomerismo
17.
ACS Omega ; 5(24): 14370-14375, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596574

RESUMO

Cesium lead halide perovskite nanocrystals are widely studied as among the most attractive emissive nanomaterials because of their high photoluminescence quantum yield and tunable emission wavelengths over the whole visible-light region by the halide ion-exchange reaction. However, the reactions were often observed in solution and generally very fast, which interferes with the fine-tuning capability of the emission properties. Here, we report a novel nanocrystal-organogel hybrid soft material in which the perovskite nanocrystals in a supramolecular gel exhibit extremely slow and inhomogeneous anion-exchange reactions that are different from those in solution. Furthermore, the inhomogeneous emission in the gel became homogeneous over several days due to a slow diffusion.

18.
J Phys Chem Lett ; 11(2): 530-535, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31814415

RESUMO

Postsynthesis anion-exchange reaction of cesium lead halide (CsPbX3; X = Cl, Br, and I) perovskite nanocrystals (NCs) has emerged as a unique strategy to control band gap. Recently, the partially anion-exchanged CsPb(Br/I)3 NC was reported to form an inhomogeneously alloyed heterostructure, which could possibly form some emission sites depending on the halide composition in the single NC. In this work, we observed the in situ emission behavior of single CsPb(Br/I)3 NCs during the anion-exchange reaction. Photon-correlation measurements of the single NCs revealed that the mixed halide CsPb(Br/I)3 NC exhibited single-photon emission. Even when irradiated with an intense excitation laser, the single NC exhibited single-photon emission with a photoluminescence spectrum of a single peak. These results suggested that the heterohalide compositions of the CsPb(Br/I)3 NC do not form any emission sites with different band gap energies; instead, the NC forms emission sites with uniform band gap energy as a whole NC via quantum confinement.

19.
Chem Commun (Camb) ; 53(70): 9663-9683, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28812751

RESUMO

Hydrogen-bonded supermacrocycles (rosettes) are attractive disk-shaped noncovalent synthons for extended functional columnar nanoassemblies. They can serve not only as noncovalent monomer units for supramolecular polymers and discrete oligomers in a dilute solution but also as constituent entities for soft matters such as gels and lyotropic/thermotropic liquid crystals. However, what are the merits of using supramolecular rosettes instead of using expanded π-conjugated covalent molecules? This review covers the self-assembly of photochemically and electrochemically active π-conjugated molecules through the formation of supramolecular rosettes via directional complementary multiple hydrogen-bonding interactions. These rosettes comprising π-conjugated covalent functional units stack into columnar nanoassemblies with unique structures and properties. By overviewing the design principle, characterization, and properties and functionalities of various examples, we illustrate the merits of utilizing rosette motifs. Basically, one can easily access a well-defined expanded π-surface composed of multi-chromophoric systems, which can ultimately afford stable extended nanoassemblies even in a dilute solution due to the higher association constants of supermacrocyclized π-systems. Importantly, these columnar nanoassemblies exhibit unique features in self-assembly processes, chiroptical, photophysical and electrochemical properties, nanoscale morphologies, and bulk properties. Moreover, the stimuli responsiveness of individual building blocks can be amplified to a greater extent by exploiting rosette intermediates to organize them into one-dimensional columnar structures. In the latter parts of the review, we also highlight the application of rosettes in supramolecular polymer systems, photovoltaic devices, and others.

20.
Sci Rep ; 7: 43098, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225029

RESUMO

The design of molecular systems with high-fidelity self-assembly pathways that include several levels of hierarchy is of primary importance for the understanding of structure-function relationships, as well as for controlling the functionality of organic materials. Reported herein is a high-fidelity self-assembly system that comprises two hydrogen-bonding molecular semiconductors with regioisomerically attached short alkyl chains. Despite the availability of both discrete cyclic and polymeric linear hydrogen-bonding motifs, the two regioisomers select one of the two motifs in homogeneous solution as well as at the 2D-confined liquid-solid interface. This selectivity arises from the high directionality of the involved hydrogen-bonding interactions, which renders rerouting to other self-assembly pathways difficult. In thin films and in the bulk, the resulting hydrogen-bonded assemblies further organize into the expected columnar and lamellar higher-order architectures via solution processing. The contrasting organized structures of these regioisomers are reflected in their notably different miscibility with soluble fullerene derivatives in the solid state. Thus, electron donor-acceptor blend films deliver a distinctly different photovoltaic performance, despite their virtually identical intrinsic optoelectronic properties. Currently, we attribute this high-fidelity control via self-assembly pathways to the molecular design of these supramolecular semiconductors, which lacks structure-determining long aliphatic chains.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa