Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 33(27)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35349994

RESUMO

The thermal conductivities of pristine and defective single-layer tungsten diselenide (WSe2) are investigated by using equilibrium molecular dynamics method. The thermal conductivity of WSe2increases dramatically with size below a characteristic of ~5 nm and levels off for broader samples and reaches a constant value of ~2 W/mK. By introducing atomic vacancies, we discovered that the thermal conductivity of WSe2is significantly reduced. In particular, the W vacancy has a greater impact on thermal conductivity reduction than Se vacancies: the thermal conductivity of pristine WSe2is reduced by ~60% and ~70% with the adding of ~1% of Se and W vacancies, respectively. The reduction of thermal conductivity is found to be related to the decrease of mean free path (MFP) of phonons in the defective WSe2. The MFP of WSe2decreases from ~4.2 nm for perfect WSe2to ~2.2 nm with the addition of 0.9% Se vacancies. More sophisticated types of point defects, such as vacancy clusters and anti-site defects, are explored in addition to single vacancies and are found to dramatically renormalize the phonons. The reconstruction of the bonds leads to localized phonons in the forbidden gap in the phonon density of states which leads to a drop in thermal conduction. This work demonstrates the influence of different defects on the thermal conductivity of single-layer WSe2, providing insight into the process of defect-induced phonon transport as well as ways to improve heat dissipation in WSe2-based electronic devices.

2.
J Phys Chem Lett ; 15(2): 575-582, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38198562

RESUMO

Water is often viewed as detrimental to organic halide perovskite stability. However, evidence highlights its efficacy as a solvent during organic perovskite liquid synthesis. This paradox prompts an investigation into water's influence on perovskite nanoclusters. Employing first principle calculations and ab initio molecular dynamics simulations, surprisingly, we discover some subsurface layers of methylammonium lead iodide (MAPbI3) nanoclusters exhibit stronger relaxation than surface layers. Moreover, a strong quantum confinement effect enhances the band gap of MAPbI3 as the nanocluster size decreases. Notably, the water molecules above MAPbI3 nanoclusters induce rich localized defect states, generating low-lying shallow states above the valence band for the small amounts of surface water molecules and band-like deep states across the whole gap for large nanoclusters. This work provides insights into water's role in the electronic structure and structural evolution of perovskite nanoclusters, aiding the design of water-resistant layers to protect perovskite quantum dots from ambient humidity.

3.
ACS Nano ; 18(22): 14187-14197, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38764189

RESUMO

Ferroelasticity is a phenomenon in which a material exhibits two or more equally stable orientation variants and can be switched from one form to another under an applied stress. Recent works have demonstrated that two-dimensional layered organic-inorganic hybrid Ruddlesden-Popper perovskites can serve as ideal platforms for realizing ferroelasticity, however, the ferroelastic (FE) behavior of structures with a single octahedra layer such as (BA)2PbI4 [BA = CH3(CH2)3NH3+] has remained elusive. Herein, by using a combined first-principles and metadynamics approach, the FE behavior of (BA)2PbI4 under mechanical and thermal stresses is uncovered. FE switching is mediated by cross-plane intermolecular coupling, which could occur through multiple rotational modes, rendering the formation of FE domains and several metastable paraelastic (PE) phases. Such metastable phases are akin to wrinkled structures in other layered materials and can act as a "funnel" of hole carriers. Thermal excitation tends to flatten the kinetic barriers of the transition pathways between orientation variants, suggesting an enhanced concentration of metastable PE states at high temperatures, while halogen mixing with Br raises these barriers and conversely lowers the concentration of PE states. These findings reveal the rich structural diversity of (BA)2PbI4 domains, which can play a vital role in enhancing the optoelectronic properties of the perovskite and raise exciting prospects for mechanical switching, shape memory, and information processing.

4.
ACS Nano ; 17(17): 16530-16538, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37646299

RESUMO

As a prototype of the Weyl superconductor, layered molybdenum ditelluride (MoTe2) encompasses two semimetallic phases (1T' and Td) which differentiate from each other via a slight tilting of the out-of-plane lattice. Both phases are subjected to serious phase mixing, which complicates the analysis of its origin of superconductivity. Herein, we explore the electron-phonon coupling (EPC) of the monolayer semimetallic MoTe2, without phase ambiguity under this thickness limit. Apart from the hardening or softening of the phonon modes, the strength of the EPC can be strongly modulated by doping. Specifically, longitudinal and out-of-plane acoustic modes are significantly activated for electron doped MoTe2. This is ascribed to the presence of rich valley states and equispaced nesting bands, which are dynamically populated under charge doping. Through comparing the monolayer and bilayer MoTe2, the strength of EPC is found to be less likely to depend on thickness for neutral samples but clearly promoted for thinner samples with electron doping, while for hole doping, the strength alters more significantly with the thickness than doping. Our work explains the issue of the doping sensitivity of the superconductivity in semimetallic MoTe2 and establishes the critical role of activating acoustic phonons in such low-dimensional materials.

5.
ACS Appl Mater Interfaces ; 15(27): 32475-32486, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37386799

RESUMO

Solvent engineering is highly essential for the upscaling synthesis of high-quality metal halide perovskite materials for solar cells. The complexity in the colloidal containing various residual species poses great difficulty in the design of the formula of the solvent. Knowledge of the energetics of the solvent-lead iodide (PbI2) adduct allows a quantitative evaluation of the coordination ability of the solvent. Herein, first-principles calculations are performed to explore the interaction of various organic solvents (Fa, AC, DMSO, DMF, GBL, THTO, NMP, and DPSO) with PbI2. Our study establishes the energetics hierarchy with an order of interaction as DPSO > THTO > NMP > DMSO > DMF > GBL. Different from the common notion of forming intimate solvent-Pb bonds, our calculations reveal that DMF and GBL cannot form direct solvent-Pb2+ bonding. Other solvent bases, such as DMSO, THTO, NMP, and DPSO, form direct solvent-Pb bonds, which penetrate through the top iodine plane and possess much stronger adsorption than DMF and GBL. A strong solvent-PbI2 adhesion (i.e., DPSO, NMP, and DMSO), associated with a high coordinating ability, explains low volatility, retarded precipitation of the perovskite solute, and tendency of a large grain size in the experiment. In contrast, weakly coupled solvent-PbI2 adducts (i.e., DMF) induces a fast evaporation of the solvent, accordingly a high nucleation density and small grains of perovskites are observed. For the first time, we reveal the promoted absorption above the iodine vacancy, which implies the need for pre-treatment of PbI2 like vacuum annealing to stabilize solvent-PbI2 adducts. Our work establishes a quantitative evaluation of the strength of the solvent-PbI2 adducts from the atomic scale perspective, which allows the selective engineering of the solvent for high-quality perovskite films.

6.
iScience ; 26(5): 106731, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216110

RESUMO

Recent successful growth of asymmetric transition metal dichalcogenides via accurate manipulation of different chalcogen atoms in top and bottom surfaces demonstrates exotic electronic and chemical properties in such Janus systems. Within the framework of density functional perturbation theory, anharmonic phonon properties of monolayer Janus MoSSe sheet are explored. By considering three-phonons scattering, out-of-plane flexural acoustic (ZA) mode tends to undergo a stronger phonon scattering than transverse acoustic (TA) mode and the longitudinal acoustic (LA) mode with phonon lifetime of ZA (1.0 ps) < LA (23.8 ps) < TA (25.8 ps). This is sharply different from the symmetric MoS2 where flexural ZA mode has the weakest anharmonicity and is least scattered. Moreover, utilizing non-equilibrium Green function method, ballistic thermal conductance at room temperature is found to be around 0.11 nWK-1nm-2, lower than that of MoS2. Our work highlights intriguing phononic properties of such MoSSe Janus layers associated with asymmetric surfaces.

7.
Nat Commun ; 14(1): 411, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697404

RESUMO

Multilayers consisting of alternating soft and hard layers offer enhanced toughness compared to all-hard structures. However, shear instability usually exists in physically sputtered multilayers because of deformation incompatibility among hard and soft layers. Here, we demonstrate that 2D hybrid organic-inorganic perovskites (HOIP) provide an interesting platform to study the stress-strain behavior of hard and soft layers undulating with molecular scale periodicity. We investigate the phonon vibrations and photoluminescence properties of Ruddlesden-Popper perovskites (RPPs) under compression using a diamond anvil cell. The organic spacer due to C4 alkyl chain in RPP buffers compressive stress by tilting (n = 1 RPP) or step-wise rotational isomerism (n = 2 RPP) during compression, where n is the number of inorganic layers. By examining the pressure threshold of the elastic recovery regime across n = 1-4 RPPs, we obtained molecular insights into the relationship between structure and deformation resistance in hybrid organic-inorganic perovskites.

8.
ChemSusChem ; 15(15): e202200564, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35680606

RESUMO

Existence of van der Waals gaps renders two-dimensional (2D) materials ideal passages of lithium for being used as anode materials. However, the requirement of good conductivity significantly limits the choice of 2D candidates. So far, only graphite is satisfying due to its relatively high conductivity. Recently, a new polymorph of layered germanium selenide (γ-GeSe) was proven to be semimetal in its bulk phase with a higher conductivity than graphite while its monolayer behaves semiconducting. In this work, by using first-principles calculations, the possibility was investigated of using this new group-IV monochalcogenide, γ-GeSe, as anode in Li-ion batteries (LIBs). The studies revealed that the Li atom would form an ionic adsorption with adjacent selenium atoms at the hollow site and exist in cationic state (lost 0.89 e to γ-GeSe). Results of climbing image-nudged elastic band showed the diffusion barrier of Li was 0.21 eV in the monolayer limit, which could activate a relatively fast diffusion even at room temperature on the γ-GeSe surface. The calculated theoretical average voltages ranged from 0.071 to 0.015 V at different stoichiometry of Lix GeSe with minor volume variation, suggesting its potential application as anode of LIBs. The predicted moderate binding energy, a low open-circuit voltage (comparable to graphite), and a fast motion of Li suggested that γ-GeSe nanosheet could be chemically exfoliated via Li intercalation and is a promising candidate as the anode material for LIBs.

9.
Nat Commun ; 13(1): 138, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013412

RESUMO

Molecularly soft organic-inorganic hybrid perovskites are susceptible to dynamic instabilities of the lattice called octahedral tilt, which directly impacts their carrier transport and exciton-phonon coupling. Although the structural phase transitions associated with octahedral tilt has been extensively studied in 3D hybrid halide perovskites, its impact in hybrid 2D perovskites is not well understood. Here, we used scanning tunneling microscopy (STM) to directly visualize surface octahedral tilt in freshly exfoliated 2D Ruddlesden-Popper perovskites (RPPs) across the homologous series, whereby the steric hindrance imposed by long organic cations is unlocked by exfoliation. The experimentally determined octahedral tilts from n = 1 to n = 4 RPPs from STM images are found to agree very well with out-of-plane surface octahedral tilts predicted by density functional theory calculations. The surface-enhanced octahedral tilt is correlated to excitonic redshift observed in photoluminescence (PL), and it enhances inversion asymmetry normal to the direction of quantum well and promotes Rashba spin splitting for n > 1.

10.
RSC Adv ; 10(2): 958-964, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35494478

RESUMO

Cs2TiI y Br6-y is a potential light absorption material for all-inorganic lead free perovskite solar cells due to its suitable and tunable bandgap, high optical absorption coefficient and high environmental stability. However, solar cells fabricated based on Cs2TiI y Br6-y do not perform well, and the reasons for their low efficiency are still unclear. Herein, hot carrier relaxation processes in Cs2TiI y Br6-y (y = 0, 2 and 6) were investigated by a time-domain density functional theory combined with the non-adiabatic molecular dynamics method. It was found that the relaxation time of the hot carriers in Cs2TiI y Br6-y ranges from 2-3 ps, which indicates that the hot carriers within 10 nm from the Cs2TiI y Br6-y /TiO2 interface can be effectively extracted before their energy is lost completely. The carrier-phonon non-adiabatic coupling (NAC) analyses demonstrate that the longer hot electron relaxation time in Cs2TiI2Br4 compared with that in Cs2TiBr6 and Cs2TiI6 originates from its weaker NAC strength. Furthermore, the electron-phonon interaction analyses indicate that the relaxation of hot electrons mainly comes from the coupling between the electrons distributed on the Ti-X bonds and the Ti-X vibrations, and that of hot holes can be attributed to the coupling between the electrons distributed on the X atoms and the distortions of [TiI y Br6-y ]2-. The simulation results indicate that Cs2TiI2Br4 should be better than Cs2TiBr6 and Cs2TiI6 to act as a light absorption layer based on the hot carrier energy loss, and the hot electron relaxation time in Cs2TiI y Br6-y can be adjusted by tuning the proportion of the I element.

11.
Materials (Basel) ; 11(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249992

RESUMO

Two nonlinear optical crystals, BaVO(IO3)5 and BaTaO(IO3)5, are designed by substituting Nb with V and Ta, respectively, in BaNbO(IO3)5, which is itself a recently synthesized infrared nonlinear optical (NLO) material. The designs of BaVO(IO3)5 and BaTaO(IO3)5 from BaNbO(IO3)5 are based on the following motivation: BaVO(IO3)5 should have a larger second-harmonic generation (SHG) coefficient than BaNbO(IO3)5, as V will result in a stronger second-order Jahn-Teller effect than Nb due to its smaller ion radius; at the same time, BaTaO(IO3)5 should have a larger laser-damage threshold, due to the fact that Ta has a smaller electronegativity leading to a greater band-gap. Established on reliable first-principle calculations, it is demonstrated that BaVO(IO3)5 has a much larger SHG coefficient than BaNbO(IO3)5 (23.42 × 10-9 vs. 18.66 × 10-9 esu); and BaTaO(IO3)5 has a significantly greater band-gap than BaNbO(IO3)5 (4.20 vs. 3.55 eV). Meanwhile, the absorption spectra and birefringences of both BaVO(IO3)5 and BaTaO(IO3)5 are acceptable for practice, suggesting that these two crystals can both be expected to be excellent infrared NLO materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa