Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 131, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229301

RESUMO

A novel aspartic protease gene (TaproA1) from Trichoderma asperellum was successfully expressed in Komagataella phaffii (Pichia pastoris). TaproA1 showed 52.8% amino acid sequence identity with the aspartic protease PEP3 from Coccidioides posadasii C735. TaproA1 was efficiently produced in a 5 L fermenter with a protease activity of 4092 U/mL. It exhibited optimal reaction conditions at pH 3.0 and 50 °C and was stable within pH 3.0-6.0 and at temperatures up to 45 °C. The protease exhibited broad substrate specificity with high hydrolysis activity towards myoglobin and hemoglobin. Furthermore, duck blood proteins (hemoglobin and plasma protein) were hydrolyzed by TaproA1 to prepare bioactive peptides with high ACE inhibitory activity. The IC50 values of hemoglobin and plasma protein hydrolysates from duck blood proteins were 0.105 mg/mL and 0.091 mg/mL, respectively. Thus, the high yield and excellent biochemical characterization of TaproA1 presented here make it a potential candidate for the preparation of duck blood peptides. KEY POINTS: • An aspartic protease (TaproA1) from Trichoderma asperellum was expressed in Komagataella phaffii. • TaproA1 exhibited broad substrate specificity and the highest activity towards myoglobin and hemoglobin. • TaproA1 has great potential for the preparation of bioactive peptides from duck blood proteins.


Assuntos
Ácido Aspártico Proteases , Hypocreales , Saccharomycetales , Trichoderma , Animais , Proteínas Fúngicas/metabolismo , Patos , Mioglobina , Peptídeos , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Proteínas Sanguíneas , Hemoglobinas , Trichoderma/genética
2.
J Dairy Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670341

RESUMO

Yogurt usually contains 5-7% sugar and 3-5% lactose. As ß-galactosidases can hydrolyze lactose and improve sweetness, they have the potential to produce lactose-free (LF) and no-sugar-added (NSA) yogurt. In this study, ß-galactosidase AoBgal35A from Aspergillus oryzae was engineered by site-saturation mutagenesis. Results of 19 variants of T955 residue showed that lactose hydrolysis rate of T955R-AoBgal35A was up to 90.7%, much higher than 78.5% of the wild type. Moreover, the optimal pH of T955R-AoBgal35A was shifted from pH 4.5 to pH 5.5 and the optimal temperature decreased from 60°C to 50°C. The mutant T955R-AoBgal35A was successfully expressed in Komagatella pastoris, which produced extracellularly 4528 U/mL of ß-galactosidase activity. The mutant T955R-AoBgal35A was used to produce LF yogurt. Streptococcus thermophilus counts of LF yogurt increased from 7.9 to 9.5 lg cfu/g, significantly higher than that of the control group (8.9 lg cfu/g). Residual lactose content of LF yogurt was 0.13%, meeting the requirement of "lactose-free" label (<0.5%, GB 28050-2011, China). Furthermore, sugar in yogurt was replaced by whey powder to produce LF-NSA yogurt. The optimal addition content of whey powder was 7.5%. The texture, WHC and titratable acidity of LF and LF-NSA yogurt achieved good stability during the shelf life. Therefore, this study provides an insight for technological implications of ß-galactosidases in the dairy industry.

3.
Appl Microbiol Biotechnol ; 107(11): 3579-3591, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115252

RESUMO

2'-Fucosyllactose (2'-FL) is known for its ability to provide various health benefits to infants, such as gut maturation, pathogen resistance, improved immunity, and nervous system development. However, the production of 2'-FL using α-L-fucosidases is hindered by the lack of low-cost natural fucosyl donors and high-efficiency α-L-fucosidases. In this work, a recombinant xyloglucanase from Rhizomucor miehei (RmXEG12A) was applied to produce xyloglucan-oligosaccharide (XyG-oligos) from apple pomace. Then, an α-L-fucosidase gene (PbFucB) was screened from the genomic DNA of Pedobacter sp. CAU209 and expressed in Escherichia coli. The capability of purified PbFucB to catalyze XyG-oligos and lactose to synthesize 2'-FL was further evaluated. The deduced amino acid sequence of PbFucB shared the highest identity (38.4%) with that of other reported α-L-fucosidases. PbFucB showed the highest activity at pH 5.5 and 35 °C. It catalyzed the hydrolysis of 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc, 20.3 U mg-1), 2'-FL (8.06 U mg-1), and XyG-oligos (0.43 U mg-1). Furthermore, PbFucB demonstrated a high enzymatic conversion rate in 2'-FL synthesis with pNP-Fuc or apple pomace-derived XyG-oligos as donors and lactose as acceptor. Under the optimized conditions, PbFucB converted 50% of pNP-Fuc or 31% of the L-fucosyl residue in XyG-oligos into 2'-FL. This work elucidated an α-L-fucosidase that mediates the fucosylation of lactose and provided an efficient enzymatic strategy to synthesize 2'-FL either from artificial pNP-Fuc or natural apple pomace-derived XyG-oligos. KEY POINTS: • Xyloglucan-oligosaccharide (XyG-oligos) was produced from apple pomace by a xyloglucanase from Rhizomucor miehei. • An α-L-fucosidase (PbFucB) from Pedobacter sp. CAU209 shared the highest identity (38.4%) with reported α-L-fucosidases. •PbFucB synthesized 2'-FL using apple pomace-derived XyG-oligos and lactose with a conversion ratio of 31%.


Assuntos
Malus , Pedobacter , Lactente , Humanos , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Malus/metabolismo , Lactose/metabolismo , Oligossacarídeos/metabolismo
4.
Mar Drugs ; 21(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103348

RESUMO

Seaweeds are considered to be third-generation renewable biomasses, the comprehensive utilization of which has drawn increasing attention in recent years. A novel cold-active alginate lyase (VfAly7) was identified from Vibrio fortis and biochemically characterized for brown seaweed utilization. The alginate lyase gene was high-level expressed in Pichia pastoris, with an enzyme yield of 560 U/mL and a protein content of 9.8 mg/mL by high-cell density fermentation. The recombinant enzyme was most active at 30 °C and pH 7.5, respectively. VfAly7 was a bifunctional alginate lyase with both poly-guluronate and poly-mannuronate hydrolysis activities. On the basis of VfAly7, a bioconversion strategy for the utilization of brown seaweed (Undaria pinnatifida) was developed. The obtained AOSs showed stronger prebiotic activity towards tested probiotics when compared to that of commercial fructooligosaccharides (FOSs), while the obtained protein hydrolysates displayed strong xanthine oxidase inhibitory activity with IC50 of 3.3 mg/mL. This study provided a novel alginate lyase tool as well as a biotransformation route for the utilization of seaweeds.


Assuntos
Alga Marinha , Alga Marinha/química , Subtilisinas/metabolismo , Polissacarídeo-Liases/metabolismo , Alginatos/metabolismo , Especificidade por Substrato , Concentração de Íons de Hidrogênio
5.
J Dairy Sci ; 106(10): 6623-6634, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37210349

RESUMO

Lacto-N-tetraose (LNT) is one of the most important components of human milk oligosaccharides, which has various beneficial health effects. ß-Galactosidase is an important enzyme used in dairy processing. The transglycosylation activity of ß-galactosidases offers an attractive approach for LNT synthesis. In this study, we reported for the first time the biochemical characterization of a novel ß-galactosidase (LzBgal35A) from Lacticaseibacillus zeae. LzBgal35A belongs to glycoside hydrolases (GH) family 35 and shared the highest identity of 59.9% with other reported GH 35 members. The enzyme was expressed as soluble protein in Escherichia coli. The purified LzBgal35A displayed optimal activity at pH 4.5 and 55°C. It was stable within the pH range of 3.5 to 7.0 and up to 60°C. Moreover, LzBgal35A could catalyze the synthesis of LNT via transferring the galactose residue from o-nitrophenyl-ß-galactopyranoside to lacto-N-triose II. Under optimal conditions, the conversion rate of LNT reached 45.4% (6.4 g/L) within 2 h, which was by far the highest yield of LNT synthesized through a ß-galactosidase-mediated transglycosylation reaction. This study demonstrated that LzBgal35A has great potential application in LNT synthesis.


Assuntos
Lacticaseibacillus , Oligossacarídeos , Humanos , Oligossacarídeos/metabolismo , beta-Galactosidase/metabolismo , Galactosidases/metabolismo , Galactose/metabolismo , Glicosídeo Hidrolases/metabolismo , Leite Humano/química
6.
Appl Microbiol Biotechnol ; 106(5-6): 1919-1932, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35179629

RESUMO

Partially hydrolyzed konjac powder (PHKP) can be used to increase the daily intake of dietary fibers of consumers. To produce PHKP by enzymatic hydrolysis, a novel ß-mannanase gene (McMan5B) from Malbranchea cinnamomea was expressed in Pichia pastoris. It showed a low identity of less than 52% with other GH family 5 ß-mannanases. Through high cell density fermentation, the highest ß-mannanase activity of 42200 U mL-1 was obtained. McMan5B showed the maximal activity at pH 7.5 and 75 °C, respectively. It exhibited excellent pH stability and thermostability. Due to the different residues (Phe214, Pro253, and His328) in catalytic groove and the change of ß2-α2 loop, McMan5B showed unique hydrolysis property as compared to other ß-mannanases. The enzyme was employed to hydrolyze konjac powder for controllable production of PHKP with a weight-average molecular weight of 22000 Da (average degree of polymerization 136). Furthermore, the influence of PHKP (1.0%-4.0%) on the qualities of steamed bread was evaluated. The steamed bread adding 3.0% PHKP had the maximum specific volume and the minimum hardness, which showed 11.0% increment and 25.4% decrement as compared to the control, respectively. Thus, a suitable ß-mannanase for PHKP controllable production and a fiber supplement for steamed bread preparation were provided in this study. KEY POINTS: • A novel ß-mannanase gene (McMan5B) was cloned from Malbranchea cinnamomea and expressed in Pichia pastoris at high level. • McMan5B hydrolyzed konjac powder to yield partially hydrolyzed konjac powder (PHKP) instead of manno-oligosaccharides. • PHKP showed more positive effect on the quality of steamed bread than many other dietary fibers including konjac powder.


Assuntos
Amorphophallus , beta-Manosidase , Amorphophallus/genética , Clonagem Molecular , Concentração de Íons de Hidrogênio , Mananas/química , Onygenales , Pichia/genética , Pós , beta-Manosidase/química , beta-Manosidase/genética
7.
J Struct Biol ; 213(3): 107774, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34329700

RESUMO

ß-1,3-1,4-Glucanases are a type of hydrolytic enzymes capable of catalyzing the strict cleavage of ß-1,4 glycosidic bonds adjacent to ß-1,3 linkages in ß-D-glucans and have exhibited great potential in food and feed industrials. In this study, a novel glycoside hydrolase (GH) family 12 ß-1,3-1,4-glucanase (CtGlu12A) from the thermophilic fungus Chaetomium sp. CQ31 was identified and biochemically characterized. CtGlu12A was most active at pH 7.5 and 65 °C, respectively, and exhibited a high specific activity of 999.9 U mg-1 towards lichenin. It maintained more than 80% of its initial activity in a wide pH range of 5.0-11.0, and up to 60 °C after incubation at 55 °C for 60 min. Moreover, the crystal structures of CtGlu12A with gentiobiose and tetrasccharide were resolved. CtGlu12A had a ß-jellyroll fold, and performed retaining mechanism with two glutamic acids severing as the catalytic residues. In the complex structure, cellobiose molecule showed two binding modes, occupying subsites -2 to -1 and subsites + 1 to + 2, respectively. The concave cleft made mixed ß-1,3-1,4-glucan substrates maintain a bent conformation to fit into the active site. Overall, this study is not only helpful for the understanding of the substrate-binding model and catalytic mechanism of GH 12 ß-1,3-1,4-glucanases, but also provides a basis for further enzymatic engineering of ß-1,3-1,4-glucanases.


Assuntos
Chaetomium , Glicosídeo Hidrolases , Domínio Catalítico , Chaetomium/metabolismo , Glicosídeo Hidrolases/química , Hidrólise , Especificidade por Substrato
8.
BMC Biotechnol ; 21(1): 21, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33706728

RESUMO

BACKGROUND: Proteases are important for hydrolysis of proteins to generate peptides with many bioactivities. Thus, the development of novel proteases with high activities is meaningful to discover bioactive peptides. Because natural isolation from animal, plant and microbial sources is impractical to produce large quantities of proteases, gene cloning and expression of target protease are preferred. RESULTS: In this study, an alkaline serine protease gene (GsProS8) from Geobacillus stearothermophilus was successfully cloned and expressed in Bacillus subtilis. The recombinant GsProS8 was produced with high protease activity of 3807 U/mL after high cell density fermentation. GsProS8 was then purified through ammonium sulfate precipitation and a two-step chromatographic method to obtain the homogeneous protease. The molecular mass of GsProS8 was estimated to be 27.2 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 28.3 kDa by gel filtration. The optimal activity of GsProS8 was found to be pH 8.5 and 50 °C, respectively. The protease exhibited a broad substrate specificity and different kinetic parameters to casein and whey protein. Furthermore, the hydrolysis of whey protein using GsProS8 resulted in a large amount of peptides with high angiotensin-I-converting enzyme (ACE) inhibitory activity (IC50 of 0.129 mg/mL). CONCLUSIONS: GsProS8 could be a potential candidate for industrial applications, especially the preparation of antihypertensive peptides.


Assuntos
Anti-Hipertensivos/química , Proteínas de Bactérias/química , Endopeptidases/química , Geobacillus stearothermophilus/enzimologia , Serina Proteases/química , Soro do Leite/química , Animais , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Bovinos , Clonagem Molecular , Endopeptidases/genética , Endopeptidases/metabolismo , Estabilidade Enzimática , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/genética , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Hidrolisados de Proteína/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Especificidade por Substrato
9.
Appl Microbiol Biotechnol ; 105(4): 1601-1614, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33511444

RESUMO

Lactic acid bacteria (LAB) are important in food fermentation and may enhance overall host health. Previous studies to explore LAB metabolism mainly focused on the genera Lacticaseibacillus and Lactococcus. Pediococcus pentosaceus, historically recognized as an important food fermentation bacterial strain, can produce bacteriocins and occasionally demonstrated probiotic functionalities. This study thoroughly surveyed the growth kinetic of three P. pentosaceus isolates in various culture formulations, especially in fructooligosaccharide (FOS), xylooligosaccharide (XOS), or konjac mannooligosaccharide (KMOS) conditions. Results showed that P. pentosaceus effectively metabolized KMOS, the culture of which led to 23.6-fold population increase. However, FOS and XOS were less metabolized by P. pentosaceus. On functional oligosaccharide cultures, P. pentosaceus could result in higher population proliferation, more acidified fermentation environment, and higher glycoside hydrolysis activities in the culture. RNA-Seq analysis classified 1572 out of 1708 putative genes as mRNA-coding genes. The dataset also revealed that the three functional oligosaccharides led to extensive global functional gene regulations. Phosphate conservation and utilization efficiency enhancement may serve as a leading transcriptional regulation direction in functional oligosaccharide metabolisms. In summary, these discovered metabolic characteristics could be employed to support future studies. KEY POINTS: • Konjac mannooligosaccharides effectively promoted P. pentosaceus proliferation. • Functional genes were highly regulated in functional oligosaccharide utilization. • Phosphate conservation was an important transcriptional regulation direction.


Assuntos
Bacteriocinas , Probióticos , Oligossacarídeos , Pediococcus/genética , Pediococcus pentosaceus/genética , Transcriptoma
10.
Biotechnol Lett ; 43(9): 1921-1932, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302564

RESUMO

OBJECTIVES: Cold-active lipases which show high specific activity at low temperatures are attractive in industrial applications in terms of product stability and energy saving. We aimed to identify novel cold-active lipase suitable for oleates synthesis and bread making. RESULTS: A novel lipase gene (RmLipA) from Rhizopus microsporus was cloned and heterologously expressed in Pichia pastoris. The encoding sequence displayed 75% identity to the lipase from R. niveus. The highest extracellular lipase activity of 7931 U/mL was achieved in a 5-L fermentation. The recombinant enzyme (RmLipA) was optimally active at pH 8.0 and 20-25 °C, respectively, and stable over a wide pH range of 2.0-11.0. The enzyme was a cold-active lipase, exhibiting > 80% of its maximal activity at 0 °C. RmLipA was a sn-1,3 regioselective lipase, and preferred to hydrolyze pNP esters and triglycerides with relatively long chain fatty acids. RmLipA synthesized various oleates using oleic acid and different alcohols as substrates (> 95%). Moreover, it significantly improved the quality of bread by increasing its specific volume (21.7%) and decreasing its crumb firmness (28.6%). CONCLUSIONS: A novel cold-active lipase gene from R. microsporus was identified, and its application potentials were evaluated. RmLipA should be a potential candidate in oleates synthesis and bread making industries.


Assuntos
Lipase/metabolismo , Ácido Oleico/metabolismo , Rhizopus/enzimologia , Saccharomycetales/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Pão/análise , Clonagem Molecular , Temperatura Baixa , Ativação Enzimática , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Lipase/genética , Rhizopus/genética , Saccharomycetales/genética
11.
J Dairy Sci ; 104(5): 5239-5255, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33663840

RESUMO

Synbiotic dietary supplements, as an effective means of regulating the gut microbiota, may have a beneficial effect on constipation. This study evaluated the effects of synbiotic yogurt containing konjac mannan oligosaccharides (KMOS) and Bifidobacterium animalis ssp. lactis BB12 (BB12) on constipated Kunming mice (the model group). Following administration of yogurt containing 2.0% KMOS and BB12 (YBK2.0), black fecal weight and number and gastrointestinal transit rate increased by 97.5, 106.3, and 55.7%, respectively, compared with the model group. Serum levels of excitability neurotransmitters (motilin, substance P, and acetylcholine) in the YBK2.0 group were increased by 139.7, 120.4, and 91.8%, respectively, and serum levels of inhibitory neurotransmitters (vasoactive intestinal peptide, nitric oxide, and acetylcholine) were decreased. Moreover, synbiotic yogurt supplementation significantly downregulated the expression of vasoactive intestinal peptide receptor 1 (VIPR1) and upregulated the expression of serotonin receptor 4 (5-HT4) in the colon, and enhanced the expression of the stem cell factor (SCF)/c-Kit pathway. Additionally, YBK2.0 treatment significantly regulated the community composition and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of gut microbiota, which were positively correlated with physiological parameters of constipation. Thus, supplementation with synbiotic yogurt composed of KMOS and BB12 could facilitate fecal excretion by regulating related pathways and the gut microbiota. These findings demonstrated that the synbiotic yogurt can be considered a functional food for alleviating constipation.


Assuntos
Bifidobacterium animalis , Microbioma Gastrointestinal , Probióticos , Simbióticos , Animais , Constipação Intestinal/terapia , Constipação Intestinal/veterinária , Mananas , Camundongos , Oligossacarídeos , Fator de Células-Tronco , Iogurte
12.
World J Microbiol Biotechnol ; 37(5): 83, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33855634

RESUMO

A novel chitosanase gene, designated as PbCsn8, was cloned from Paenibacillus barengoltzii. It shared the highest identity of 73% with the glycoside hydrolase (GH) family 8 chitosanase from Bacillus thuringiensis JAM-GG01. The gene was heterologously expressed in Bacillus subtilis as an extracellular protein, and the highest chitosanase yield of 1, 108 U/mL was obtained by high-cell density fermentation in a 5-L fermentor. The recombinant chitosanase (PbCsn8) was purified to homogeneity and biochemically characterized. PbCsn8 was most active at pH 5.5 and 70 °C, respectively. It was stable in a wide pH range of 5.0-11.0 and up to 55 °C. PbCsn8 was a bifunctional enzyme, exhibiting both chitosanase and glucanase activities, with the highest specificity towards chitosan (360 U/mg), followed by barley ß-glucan (72 U/mg) and lichenan (13 U/mg). It hydrolyzed chitosan to release mainly chitooligosaccharides (COSs) with degree of polymerization (DP) 2-3, while hydrolyzed barley ß-glucan to yield mainly glucooligosaccharides with DP > 5. PbCsn8 was further applied in COS production, and the highest COS yield of 79.3% (w/w) was obtained. This is the first report on a GH family 8 chitosanase from P. barengoltzii. The high yield and remarkable hydrolysis properties may make PbCsn8 a good candidate in industrial application.


Assuntos
Quitina/análogos & derivados , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/genética , Paenibacillus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitina/biossíntese , Quitosana/metabolismo , Clonagem Molecular , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Hidrólise , Microbiologia Industrial , Oligossacarídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Glucanas/metabolismo
13.
FASEB J ; 33(11): 11655-11667, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415188

RESUMO

Diabetes significantly affects the life quality and length of patients with diabetes, and almost half of the 4 million people who die from diabetes are under the age of 60. Because of the increasing number of patients with diabetes and the side effects of antidiabetic drugs, the search for new dietary supplementation from natural resources, especially functional oligosaccharides, has attracted much attention among scientific researchers. Functional oligosaccharides are potential antidiabetic treatments because of their nondigestible, low-calorie, and probiotic features. The antidiabetic activity of multiple functional oligosaccharides such as fructo-oligosaccharides, galacto-oligosaccharides, and xylo-oligosaccharides has been reviewed in this paper. Molecular mechanisms involved in the antidiabetic activity of oligosaccharides have been systematically discussed from multiple perspectives, including the improvement of pancreas function, α-glucosidase inhibition, the relief of insulin and leptin resistance, anti-inflammatory effects, regulation of gut microbiota and hormones, and the intervention of diabetic risk factors. In addition, the antidiabetic effects of functional oligosaccharides through the complex gut-brain-liver axis are summarized. The concepts addressed in this review have important clinical implications, although more works are needed to confirm the antidiabetic mechanisms of functional oligosaccharides, standardize safe dose levels, and clarify their metabolism in the human body.-Zhu, D., Yan, Q., Liu, J., Wu, X., Jiang, Z. Can functional oligosaccharides reduce the risk of diabetes mellitus?


Assuntos
Diabetes Mellitus/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Insulina/farmacologia , Oligossacarídeos/metabolismo , Animais , Diabetes Mellitus/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo
14.
Appl Microbiol Biotechnol ; 104(13): 5813-5826, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32388762

RESUMO

Fucosyllactoses have gained much attention owing to their multiple functions, including prebiotic, immune, gut, and cognition benefits. In this study, human milk oligosaccharide (HMO) 2'-fucosyllactose (α-L-Fuc-(1,2)-D-Galß-1,4-Glu, 2'FL) and its isomer 3'-fucosyllactose (α-L-Fuc-(1,3)-D-Galß-1,4-Glu, 3'FL) with potential prebiotic effect were synthesized efficiently by a novel recombinant α-L-fucosidase. An α-L-fucosidase gene (PbFuc) from Pedobacter sp. CAU209 was successfully cloned and expressed in Escherichia coli (E. coli). The deduced amino acid sequence shared the highest identity of 36.8% with the amino sequences of other reported α-L-fucosidases. The purified α-L-fucosidase (PbFuc) had a molecular mass of 50 kDa. The enzyme exhibited specific activity (26.3 U/mg) towards 4-nitrophenyl-α-L-fucopyranoside (pNP-FUC), 3'FL (8.9 U/mg), and 2'FL (3.4 U/mg). It showed the highest activity at pH 5.0 and 35 °C, respectively. PbFuc catalyzed the synthesis of 3'FL and 2'FL through a transglycosylation reaction using pNP-FUC as donor and lactose as acceptor, and total conversion ratio was up to 85% at the optimized reaction conditions. The synthesized mixture of 2'FL and 3'FL promoted the growth of Lactobacillus delbrueckii subsp. bulgaricus NRRL B-548, L. casei subsp. casei NRRL B-1922, L. casei subsp. casei AS 1.2435, and Bifidobacterium longum NRRL B-41409. However, the growths of E. coli ATCC 11775, S. enterica AS 1.1552, L. monocytogenes CICC 21635, and S. aureus AS 1.1861 were not stimulated by the mixture of 2'FL and 3'FL. Overall, our findings suggest that PbFuc possesses a great potential for the specific synthesis of fucosylated compounds.Key Points• A novel α-L-fucosidase (PbFuc) from Pedobacter sp. was cloned and expressed.• PbFuc showed the highest hydrolysis activity at pH 5.0 and 35 °C, respectively.• It was used for synthesis of 3'-fucosyllactose (3'FL) and 2'-fucosyllactose (2'FL).• The mixture of 3'FL and 2'FL promoted the growth of some Lactobacillus sp. and Bifidobacteria sp.


Assuntos
Proteínas de Bactérias/metabolismo , Oligossacarídeos/biossíntese , Pedobacter/enzimologia , Trissacarídeos/biossíntese , alfa-L-Fucosidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeos/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Lactose/metabolismo , Peso Molecular , Pedobacter/genética , Prebióticos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/isolamento & purificação
15.
Biotechnol Lett ; 42(8): 1489-1499, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32170432

RESUMO

OBJECTIVES: Chitinases play important role in chitin bioconversion, while few of them have been put into use due to their poor properties. We aimed to identify and characterize chitinases suitable for N-acetyl chitooligosaccharides (COSs) production from chitin materials. RESULTS: A chitinase gene (SsChi28) from Streptomyces sampsonii XY2-7 was cloned and heterologously expressed in E. coli BL21 (DE3) as an active protein. The deduced protein shared high sequence identities and structure similarities with some glycoside hydrolase family 19 chitinases. The recombinant enzyme (SsChi28) was purified and biochemically characterized. SsChi28 was a monomeric protein with a molecular mass of 30 kDa estimated by SDS-PAGE. It was most active at pH 6.0 and 55 °C, respectively, and stable in a wide pH range of 3.5-11.5 and up to 60 °C. The enzyme exhibited strict substrate specificities towards ethylene glycol chitin (222.3 U/mg) and colloidal chitin (20.1 U/mg). Besides, it displayed lysozyme activity against Micrococcus lysodeikticus. SsChi28 hydrolyzed colloidal chitin to yield mainly N-acetyl chitobiose, accounting high up to 73% (w/w) in total products. CONCLUSION: The excellent enzymatic properties of SsChi28 may make it potential in chitin bioconversion (especially for N-acetyl COS production), as well as in biological control of fungal diseases.


Assuntos
Proteínas de Bactérias , Quitinases , Dissacarídeos/metabolismo , Muramidase , Streptomyces , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitinases/química , Quitinases/genética , Quitinases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Muramidase/química , Muramidase/genética , Muramidase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato
16.
J Biol Chem ; 293(30): 11746-11757, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29871927

RESUMO

ß-1,4-Mannanase degrades ß-1,4-mannan polymers into manno-oligosaccharides with a low degree of polymerization. To date, only one glycoside hydrolase (GH) family 113 ß-1,4-mannanase, from Alicyclobacillus acidocaldarius (AaManA), has been structurally characterized, and no complex structure of enzyme-manno-oligosaccharides from this family has been reported. Here, crystal structures of a GH family 113 ß-1,4-mannanase from Amphibacillus xylanus (AxMan113A) and its complexes with mannobiose, mannotriose, mannopentaose, and mannahexaose were solved. AxMan113A had higher affinity for -1 and +1 mannoses, which explains why the enzyme can hydrolyze mannobiose. At least six subsites (-4 to +2) exist in the groove, but mannose units preferentially occupied subsites -4 to -1 because of steric hindrance formed by Lys-238 and Trp-239. Based on the structural information and bioinformatics, rational design was implemented to enhance hydrolysis activity. Enzyme activity of AxMan113A mutants V139C, N237W, K238A, and W239Y was improved by 93.7, 63.4, 112.9, and 36.4%, respectively, compared with the WT. In addition, previously unreported surface-binding sites were observed. Site-directed mutagenesis studies and kinetic data indicated that key residues near the surface sites play important roles in substrate binding and recognition. These first GH family 113 ß-1,4-mannanase-manno-oligosaccharide complex structures may be useful in further studying the catalytic mechanism of GH family 113 members, and provide novel insight into protein engineering of GHs to improve their hydrolysis activity.


Assuntos
Bacillaceae/enzimologia , beta-Manosidase/química , beta-Manosidase/metabolismo , Sequência de Aminoácidos , Bacillaceae/química , Bacillaceae/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Mananas/metabolismo , Modelos Moleculares , Oligossacarídeos/metabolismo , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Trissacarídeos/metabolismo
17.
Molecules ; 24(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766621

RESUMO

Functional oligosaccharides, particularly curdlan (1→3)-ß-d-glucan oligosaccharides (GOS), play important roles in modulating host immune responses. However, the molecular mechanisms underlying the immunostimulatory effects of GOS on macrophage polarization are not clear. In this work, GOS (5-1000 µg/mL) were non-toxic to bone marrow-derived macrophages (BMDMs) with improved pinocytic and bactericidal capacities. Incubation with GOS (100 µg/mL) induced M1 phenotype polarization of BMDMs as evidenced by increased CD11c+/CD86+ (10.1%) and M1 gene expression of inducible nitric oxide synthase, interleukin (IL)-1ß, and chemokine C-C-motif ligand 2. Accordingly, the secretion of cytokines IL-1ß, IL-6, monocyte chemotactic protein-1, and tumor necrosis factor-α, as well as the nitrite release of BMDMs were increased by GOS (100 µg/mL). Expression of mitogen-activated protein kinases (MAPKs) of phosphorylated (p)-c-Jun amino-terminal kinase, p-extracellular signal regulated kinase, and p-p38 in BMDMs were increased by GOS, as well as the p-Stat1. Moreover, nuclear factor-kappa B (NF-κB) p-p65 expression in BMDMs was promoted by GOS while it suppressed IκBα expression. Receptor blocking with anti-CR3 (CD11b/CD18) and anti-toll-like receptor (TLR) 2 antibodies diminished GOS induced M1 phenotype polarization with reduced mRNA expression of M1 genes, decreased cytokine and nitrite releases, and suppressed signaling pathway activation. Thus, CR3 (CD11b/CD18) and TLR2 mediated activation of MAPKs and NF-κB pathways are responsible for GOS induced polarization of BMDMs.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/citologia , NF-kappa B/metabolismo , Oligossacarídeos/farmacologia , beta-Glucanas/química , Alcaligenes faecalis , Animais , Polaridade Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligossacarídeos/síntese química , Oligossacarídeos/química , Fosforilação , Pinocitose/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , beta-Glucanas/farmacologia
18.
Compr Rev Food Sci Food Saf ; 18(6): 1859-1881, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33336967

RESUMO

Alginate, a group of polyuronic saccharides, has been widely used in both pharmaceutical and food industries due to its unique physicochemical properties as well as beneficial health effects. However, the potential applications of alginate are restricted because of its low water solubility and high solution viscosity when significant concentrations are needed, particularly in food products. Alginate oligosaccharides (AOS), oligomers containing 2 to 25 monomers, can be obtained via hydrolysis of glycosidic bonds, organic synthesis, or through biosynthesis. Generally, AOS have shorter chain lengths and thus improved water solubility when compared with higher molecular weight alginates of the same monomers. These oligosaccharides have attracted interest from both basic and applied researchers. AOS have unique bioactivity and can impart health benefits. They have shown immunomodulatory, antimicrobial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, anticoagulant, and other activities. As examples, they have been utilized as prebiotics, feed supplements for aquaculture, poultry, and swine, elicitors for plants and microorganisms, cryoprotectors for frozen foods, and postharvest treatments. This review comprehensively covers methods for AOS production from alginate, such as physical/chemical methods, enzymatic methods, fermentation, organic synthesis, and biosynthesis. Moreover, current progress in structural characterization, potential health benefits, and AOS metabolism after ingestion are summarized in this review. This review will discuss methods for producing and modified AOS with desirable structures that are suited for novel applications.

19.
J Biol Chem ; 292(5): 1666-1678, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27956553

RESUMO

Carbohydrates are complex macromolecules in biological metabolism. Enzymatic synthesis of carbohydrates is recognized as a powerful tool to overcome the problems associated with large scale synthesis of carbohydrates. Novel enzymes with significant transglycosylation ability are still in great demand in glycobiology studies. Here we report a novel glycoside hydrolase family 16 "elongating" ß-transglycosylase from Paecilomyces thermophila (PtBgt16A), which efficiently catalyzes the synthesis of higher polymeric oligosaccharides using ß-1,3/1,4-oligosaccharides as donor/acceptor substrates. Further structural information reveals that PtBgt16A has a binding pocket around the -1 subsite. The catalytic mechanism of PtBgt16A is partly similar to an exo-glycoside hydrolase, which cleaves the substrate from the non-reducing end one by one. However, PtBgt16A releases the reducing end product and uses the remainder glucosyl as a transglycosylation donor. This catalytic mechanism has similarity with the catalytic mode of amylosucrase, which catalyzes the transglycosylation products gradually extend by one glucose unit. PtBgt16A thus has the potential to be a tool enzyme for the enzymatic synthesis of new ß-oligosaccharides and glycoconjugates.


Assuntos
Polissacarídeos Fúngicos/biossíntese , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Complexos Multienzimáticos/metabolismo , Oligossacarídeos/biossíntese , Paecilomyces/enzimologia , Transferases/metabolismo , Catálise , Polissacarídeos Fúngicos/genética , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/genética , Complexos Multienzimáticos/genética , Oligossacarídeos/genética , Paecilomyces/genética , Transferases/genética
20.
Biochim Biophys Acta Gen Subj ; 1862(6): 1376-1388, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29550433

RESUMO

Mannan is one of the major constituent groups of hemicellulose, which is a renewable resource from higher plants. ß-Mannanases are enzymes capable of degrading lignocellulosic biomass. Here, an endo-ß-mannanase from Rhizopus microsporus (RmMan134A) was cloned and expressed. The recombinant RmMan134A showed maximal activity at pH 5.0 and 50 °C, and exhibited high specific activity towards locust bean gum (2337 U/mg). To gain insight into the substrate-binding mechanism of RmMan134A, four complex structures (RmMan134A-M3, RmMan134A-M4, RmMan134A-M5 and RmMan134A-M6) were further solved. These structures showed that there were at least seven subsites (-3 to +4) in the catalytic groove of RmMan134A. Mannose in the -1 subsite hydrogen bonded with His113 and Tyr131, revealing a unique conformation. Lys48 and Val159 formed steric hindrance, which impedes to bond with galactose branches. In addition, the various binding modes of RmMan134A-M5 indicated that subsites -2 to +2 are indispensable during the hydrolytic process. The structure of RmMan134A-M4 showed that mannotetrose only binds at subsites +1 to +4, and RmMan134A could therefore not hydrolyze mannan oligosaccharides with degree of polymerization ≤4. Through rational design, the specific activity and optimal conditions of RmMan134A were significantly improved. The purpose of this paper is to investigate the structure and function of fungal GH family 134 ß-1,4-mannanases, and substrate-binding mechanism of GH family 134 members.


Assuntos
Glicosídeos/metabolismo , Mananas/metabolismo , Rhizopus/enzimologia , beta-Manosidase/química , beta-Manosidase/metabolismo , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Cristalografia por Raios X , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa