Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2216574120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276415

RESUMO

The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.


Assuntos
Crustáceos , Animais , Crustáceos/genética , Crustáceos/imunologia , Crustáceos/metabolismo , Crustáceos/microbiologia , Drosophila melanogaster , Lipopolissacarídeos , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Regulação para Cima , Vibrio , Transdução de Sinais , Humanos
2.
Plant Physiol ; 195(1): 652-670, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38412470

RESUMO

Poplar (Populus) is a well-established model system for tree genomics and molecular breeding, and hybrid poplar is widely used in forest plantations. However, distinguishing its diploid homologous chromosomes is difficult, complicating advanced functional studies on specific alleles. In this study, we applied a trio-binning design and PacBio high-fidelity long-read sequencing to obtain haplotype-phased telomere-to-telomere genome assemblies for the 2 parents of the well-studied F1 hybrid "84K" (Populus alba × Populus tremula var. glandulosa). Almost all chromosomes, including the telomeres and centromeres, were completely assembled for each haplotype subgenome apart from 2 small gaps on one chromosome. By incorporating information from these haplotype assemblies and extensive RNA-seq data, we analyzed gene expression patterns between the 2 subgenomes and alleles. Transcription bias at the subgenome level was not uncovered, but extensive-expression differences were detected between alleles. We developed machine-learning (ML) models to predict allele-specific expression (ASE) with high accuracy and identified underlying genome features most highly influencing ASE. One of our models with 15 predictor variables achieved 77% accuracy on the training set and 74% accuracy on the testing set. ML models identified gene body CHG methylation, sequence divergence, and transposon occupancy both upstream and downstream of alleles as important factors for ASE. Our haplotype-phased genome assemblies and ML strategy highlight an avenue for functional studies in Populus and provide additional tools for studying ASE and heterosis in hybrids.


Assuntos
Alelos , Genoma de Planta , Populus , Populus/genética , Genoma de Planta/genética , Regulação da Expressão Gênica de Plantas , Haplótipos/genética , Hibridização Genética , Aprendizado de Máquina
3.
Nano Lett ; 24(22): 6617-6624, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38717095

RESUMO

The mapping of long-wavelength phonons is important to understand and manipulate the thermal transport in multilayered structures, but it remains a long-standing challenge due to the collective behaviors of phonons. In this study, an experimental demonstration of mapping the long-wavelength phonons in an alloyed Al0.1Ga0.9As/Al0.9Ga0.1As superlattice system is reported. Multiple strategies to filter out the short- to mid-wavelength phonons are used. The phonon mean-free-path-dependent thermal transport properties directly demonstrate both the suppression effect of the ErAs nanoislands and the contribution of long-wavelength phonons. The contribution from phonons with mean free path longer than 1 µm is clearly demonstrated. A model based on the Boltzmann transport equation is proposed to calculate and describe the thermal transport properties, which depicts a clear physical picture of the transport mechanisms. This method can be extended to map different wavelength phonons and become a universal strategy to explore their thermal transport in various application scenarios.

4.
Development ; 148(5)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692089

RESUMO

Animal steroid hormones initiate signaling by passive diffusion into cells and binding to their nuclear receptors to regulate gene expression. Animal steroid hormones can initiate signaling via G protein-coupled receptors (GPCRs); however, the underlying mechanisms are unclear. Here, we show that a newly discovered ecdysone-responsive GPCR, ErGPCR-3, transmits the steroid hormone 20-hydroxyecdysone (20E) signal by binding 20E and promoting its entry into cells in the lepidopteran insect Helicoverpa armigera Knockdown of ErGPCR-3 in larvae caused delayed and abnormal pupation, inhibited remodeling of the larval midgut and fat body, and repressed 20E-induced gene expression. Also, 20E induced both the interaction of ErGPCR-3 with G proteins and rapid intracellular increase in calcium, cAMP and protein phosphorylation. ErGPCR-3 was endocytosed by GPCR kinase 2-mediated phosphorylation, and interacted with ß-arrestin-1 and clathrin, to terminate 20E signaling under 20E induction. We found that 20E bound to ErGPCR-3 and induced the ErGPCR-3 homodimer to form a homotetramer, which increased 20E entry into cells. Our study revealed that homotetrameric ErGPCR-3 functions as a cell membrane receptor and increases 20E diffusion into cells to transmit the 20E signal and promote metamorphosis.


Assuntos
Ecdisterona/farmacologia , Proteínas de Insetos/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Clatrina/metabolismo , Ecdisterona/química , Ecdisterona/metabolismo , Endocitose , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
BMC Plant Biol ; 24(1): 117, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365588

RESUMO

BACKGROUND: In paddy fields, the noxious weed barnyard grass secretes 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) to interfere with rice growth. Rice is unable to synthesize DIMBOA. Rice cultivars with high or low levels of allelopathy may respond differently to DIMBOA. RESULTS: In this study, we found that low concentrations of DIMBOA (≤ 0.06 mM) promoted seedling growth in allelopathic rice PI312777, while DIMBOA (≤ 0.08 mM) had no significant influence on the nonallelopathic rice Lemont. DIMBOA treatment caused changes in the expression of a large number of glutathione S-transferase (GST) proteins, which resulting in enrichment of the glutathione metabolic pathway. This pathway facilitates plant detoxification of heterologous substances. The basal levels of GST activity in Lemont were significantly higher than those in PI312777, while GST activity in PI312777 was slightly induced by increasing DIMBOA concentrations. Overexpression of GST genes (Os09g0367700 and Os01g0949800) in these two cultivars enhanced rice resistance to DIMBOA. CONCLUSIONS: Taken together, our results indicated that different rice accessions with different levels of allelopathy have variable tolerance to DIMBOA. Lemont had higher GST activity, which helped it tolerate DIMBOA, while PI312777 had lower GST activity that was more inducible. The enhancement of GST expression facilitates rice tolerance to DIMBOA toxins from barnyard grass root exudates.


Assuntos
Benzoxazinas , Echinochloa , Oryza , Oryza/metabolismo , Plantas Daninhas , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
6.
BMC Cancer ; 24(1): 111, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254070

RESUMO

BACKGROUND: Myelodysplastic syndrome (MDS) is known to arise through the pathogenic bone marrow mesenchymal stem cells (MSC) by interacting with hematopoietic stem cells (HSC). However, due to the strong heterogeneity of MDS patients, it is difficult to find common targets in studies with limited sample sizes. This study aimed to describe sequential molecular changes and identify biomarkers in MSC of MDS transformation. METHODS: Multidimensional data from three publicly available microarray and TCGA datasets were analyzed. MDS-MSC was further isolated and cultured in vitro to determine the potential diagnostic and prognostic value of the identified biomarkers. RESULTS: We demonstrated that normal MSCs presented greater molecular homogeneity than MDS-MSC. Biological process (embryonic skeletal system morphogenesis and angiogenesis) and pathways (p53 and MAPK) were enriched according to the differential gene expression. Furthermore, we identified HOXB3 and HOXB7 as potential causative genes gradually upregulated during the normal-MDS-AML transition. Blocking the HOXB3 and HOXB7 in MSCs could enhance the cell proliferation and differentiation, inhibit cell apoptosis and restore the function that supports hematopoietic differentiation in HSCs. CONCLUSION: Our comprehensive study of gene expression profiling has identified dysregulated genes and biological processes in MSCs during MDS. HOXB3 and HOXB7 are proposed as novel surrogate targets for therapeutic and diagnostic applications in MDS.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio , Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Humanos , Biomarcadores , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Síndromes Mielodisplásicas/genética
7.
Fish Shellfish Immunol ; 147: 109467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423489

RESUMO

LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-ß (IL-1ß) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1ß, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Perciformes , Animais , Peixes , Proteínas de Peixes/genética , Hepcidinas/genética , Antibacterianos , Bactérias Gram-Negativas , Filogenia , Bactérias Gram-Positivas , Imunidade Inata/genética , Peptídeos Antimicrobianos
8.
Mol Biol Rep ; 51(1): 415, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472517

RESUMO

Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno do Espectro Autista/genética , Caracteres Sexuais , Transtorno Depressivo Maior/metabolismo , Estrogênios/metabolismo , Sinapses/metabolismo , Emoções
9.
Phys Chem Chem Phys ; 26(15): 11611-11617, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546106

RESUMO

Many BF2 complexes of heteroaromatics are well known for their dual-state emission (DSE) properties. However, AIE and ACQ effects have also been observed in certain cases. To date, no rational explanations have been proposed for these uncommon photoluminescence (PL) behaviours. The current research prepared four BF2 complexes of N-benzoyl 2-aminobenzothiazoles with diversified photoluminescence (PL) properties as model compounds and utilized quantum chemical calculation tools to address this issue. Theoretical calculations revealed that the electron-donating groups (EDGs) at the para-position of the exocyclic phenyl ring exert significant influence on their ground-state electronic structures and vertical excitation features. Potential energy curve (PEC) analysis showed that the exocyclic phenyl ring and NMe2 could not function as effective rotors due to elevated energy barriers. Only the NPh2 of BFBB-3 could spontaneously rotate ∼60° to induce the formation of an emissive twisted intramolecular charge transfer (TICT) state. The two-channel model involving both vibronic relaxation and S0/S1 surface crossing revealed that the drastic narrowing of the S1/S0 energy gap in the region approaching minimun energy conical intersection (MECI) led to the generation of a dark state in BFBB-1. The small energy barrier to access the dark-state region makes the resulting fast internal conversion a competitive channel for excited-state deactivation. In contrast, the presence of EDGs in BFBB-2 and 4 inhibits this pathway, thereby resulting in intense fluorescence emissions in solution. In addition, crystallographic analysis illustrated that the F atoms perpendicular to the polyheterocycle promoted a slipped face-to-face packing mode and enhanced intermolecular interactions. The efficiencies of their solid-state emissions are mainly affected by the degree of π-π overlaps.

10.
J Integr Neurosci ; 23(3): 66, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538218

RESUMO

Neuropeptides are endogenous active substances within the central and peripheral nervous systems that play important roles in a wide range of brain functions, including metabolism, food intake, social behavior, reproduction, learning, sleep, and wakefulness. This article reviews recent advances in the involvement of neuropeptides in vascular dementia. Neuropeptides are present in the brain as chemical signals and last for nearly 50 years. Peptide hormones are chemical signals of the endocrine system. Thus, neuropeptides are the most diverse class of signaling molecules in the brain, involving the genomes of many mammals, encoding neuropeptide precursors and many bioactive neuropeptides. Here the aim is to describe the recent advances in classical neuropeptides, as well as putative neuropeptides from other families, in the control of or as diagnostic tools for vascular dementia. Additionally, its molecular mechanisms are described to explore new avenues of treatment and early diagnosis, as there is increasing evidence that dysregulation of vascular processes is associated with different pathological conditions.


Assuntos
Demência Vascular , Neuropeptídeos , Animais , Humanos , Demência Vascular/diagnóstico , Neuropeptídeos/metabolismo , Encéfalo/metabolismo , Transdução de Sinais , Biomarcadores/metabolismo , Mamíferos/metabolismo
11.
BMC Biol ; 21(1): 119, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226192

RESUMO

BACKGROUND: The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS: Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS: The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.


Assuntos
Ecdisterona , Insulina , Animais , Ecdisterona/farmacologia , Fosfoglicerato Quinase/genética , Fosforilação , Apoptose , Larva
12.
J Environ Manage ; 354: 120308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377751

RESUMO

Urban flood risk assessment plays a crucial role in disaster prevention and mitigation. A scientifically accurate assessment and risk stratification method are of paramount importance for effective flood risk management. This study aims to propose a comprehensive urban flood risk assessment approach by coupling GeoDetector-Dematel and Clustering Method to enhance the accuracy of urban flood risk evaluation. Based on simulation results from hydraulic models and existing literature, the research established a set of urban flood risk assessment indicators comprising 10 metrics across two dimensions: hazard factors and vulnerability factors, among which vulnerability factors include exposure factors, sensitivity factors, and adaptability factors. Subsequently, the research introduced the GeoDetector-Dematel method to determine indicator weights, significantly enhancing the scientific rigor and precision of weight calculation. Finally, the research employed the K-means clustering method to risk zonation, providing a more scientifically rational depiction of the spatial distribution of urban flood risks. This novel comprehensive urban flood risk assessment method was applied in the Fangzhuang area of Beijing. The results demonstrated that this integrated approach effectively enhances the accuracy of urban flood risk assessment. In conclusion, this research offers a new methodology for urban flood risk assessment and contributes to decision-making in disaster prevention and control measures.


Assuntos
Desastres , Inundações , Desastres/prevenção & controle , Medição de Risco/métodos , Pequim , Fatores de Risco
13.
Funct Integr Genomics ; 23(4): 309, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37735249

RESUMO

Estrogen (E2) modulates the synaptic structure and plasticity in the hippocampus. Previous studies showed that E2 fluctuations during various phases of the menstrual cycle produce subtle neurosynaptic changes that impact women's behavior, emotion, and cognitive functions. In this study, we explored the transcriptome of the hippocampus via RNA-seq (RNA-sequencing) between proestrus (PE) and diestrus (DE) stages in young female rats to determine the effect of E2 of PE and DE stages on hippocampal gene expression. We identified 238 genes (at 1.5-fold-change selection criteria, FDR adjusted p-value < 0.05) as differentially expressed genes (DEGs) that responded to E2 between PE and DE stages. Functional analysis based on Gene Ontology (GO) revealed that a higher E2 level corresponded to an increase in gene transcription among most of the DEGs, suggesting biological mechanisms operating differentially in the hippocampus of female rats between PE and DE stages in the estrus cycle; while analysis with Kyoto Encyclopedia of Genes and Genomes database (KEGG) found that the DEGs involving neuroactive ligand-receptor interaction, antigen processing, cell adhesion molecules, and presentation were upregulated in PE stage, whereas DEGs in pathways relating to bile secretion, coagulation cascades, osteoclast differentiation, cysteine and methionine metabolism were upregulated in DE stage of the estrus cycle. The high-fold expression of DEGs was confirmed by a follow-up quantitative real-time PCR. Our findings in this current study have provided fundamental information for further dissection of neuro-molecular mechanisms in the hippocampus in response to E2 fluctuation and its relationship with disorders.


Assuntos
Cisteína , Transcriptoma , Humanos , Animais , Feminino , Ratos , Estrogênios , Estro , Hipocampo
14.
Breast Cancer Res Treat ; 202(3): 595-606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37695401

RESUMO

PURPOSE: The overexpression of mitotic kinase monopolar spindle 1 (Mps1) has been identified in many tumor types, and targeting Mps1 for tumor therapy has shown great promise in multiple preclinical cancer models. However, the role played by Mps1 in tamoxifen (TAM) resistance in breast cancer has never been reported. METHODS: The sensitivity of breast cancer cells to tamoxifen was analysed in colony formation assays and wound healing assays. Enhanced transactivational activity of estrogen receptor α (ERα) led by Mps1 overexpression was determined by luciferase assays. The interaction between Mps1 and ERα was verified by co-immunoprecipitation and proximity ligation assay. Phosphorylation of ERα by Mps1 was detected by in vitro kinase assay and such phosphorylation process in vivo was proven by co-immunoprecipitation. The potential phosphorylation site(s) of ERα were analyzed by mass spectrometry. RESULTS: Mps1 determines the sensitivity of breast cancer cells to tamoxifen treatment. Mps1 overexpression rendered breast cancer cells more resistant to tamoxifen, while an Mps1 inhibitor or siMps1 oligos enabled cancer cells to overcome tamoxifen resistance. Mechanistically, Mps1 interacted with estrogen receptor α and stimulated its transactivational activity in a kinase activity-dependent manner. Mps1 was critical for ERα phosphorylation at Thr224 amino acid site. Importantly, Mps1 failed to enhance the transactivational activity of the ERα-T224A mutant. CONCLUSION: Mps1 contributes to tamoxifen resistance in breast cancer and is a potential therapeutic that can overcome tamoxifen resistance in breast cancer.

15.
New Phytol ; 238(5): 2016-2032, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36792969

RESUMO

Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated. First, we presented a high-quality chromosome-scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50 = 4.21 Mb, scaffold N50 = 75.55 Mb; 2n = 24) harbors 31 584 protein-coding genes. Second, our metabolome analyses uncovered pelargonidin-3-O-glucoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside as the main pigments involved in leaf color transition. Third, gene co-expression further identified the MYB-bHLH-WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation. Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co-expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein-protein and DNA-protein interaction assays. Our high-quality genome assembly, metabolome, and transcriptome resources further enrich Quercus genomics and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.


Assuntos
Antocianinas , Quercus , Antocianinas/metabolismo , Quercus/genética , Quercus/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Fatores de Transcrição/metabolismo , Metaboloma , Pigmentação/genética , Cromossomos , Glucosídeos , Cor
16.
Am J Hematol ; 98(9): 1394-1406, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366294

RESUMO

Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell malignancy, and allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curable treatment. The outcomes after transplant are influenced by both disease characteristics and patient comorbidities. To develop a novel prognostic model to predict the post-transplant survival of CMML patients, we identified risk factors by applying univariable and multivariable Cox proportional hazards regression to a derivation cohort. In multivariable analysis, advanced age (hazard ratio [HR] 3.583), leukocyte count (HR 3.499), anemia (HR 3.439), bone marrow blast cell count (HR 2.095), and no chronic graft versus host disease (cGVHD; HR 4.799) were independently associated with worse survival. A novel prognostic model termed ABLAG (Age, Blast, Leukocyte, Anemia, cGVHD) was developed and the points were assigned according to the regression equation. The patients were categorized into low risk (0-1), intermediate risk (2, 3), and high risk (4-6) three groups and the 3-year overall survival (OS) were 93.3% (95%CI, 61%-99%), 78.9% (95%CI, 60%-90%), and 51.6% (95%CI, 32%-68%; p < .001), respectively. In internal and external validation cohort, the area under the receiver operating characteristic (ROC) curves of the ABLAG model were 0.829 (95% CI, 0.776-0.902) and 0.749 (95% CI, 0.684-0.854). Compared with existing models designed for the nontransplant setting, calibration plots, and decision curve analysis showed that the ABLAG model revealed a high consistency between predicted and observed outcomes and patients could benefit from this model. In conclusion, combining disease and patient characteristic, the ABLAG model provides better survival stratification for CMML patients receiving allo-HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mielomonocítica Crônica , Humanos , Prognóstico , Transplante Homólogo/efeitos adversos , Estudos Retrospectivos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia
17.
Fish Shellfish Immunol ; 140: 108936, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423401

RESUMO

IFN-γ (interferon gamma) is a critical cytokine in the immune system involved both directly and indirectly in antiviral activity, stimulation of bactericidal activity, antigen presentation and activation of macrophages via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. The IFN-γ function is best described in cell defense against intracellular pathogens in mammals, but IFN-γ cytokine-induced metabolic change and its role in anti-infection remain unknown in teleost fish. In this study, a novel IFN-γ (SsIFN-γ) was identified from black rockfish (Sebastes schlegeli) by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of SsIFN-γ encoded a putative protein of 215 amino acids and shares 60.2%-93.5% overall sequence identities with other teleost IFN-γ. SsIFN-γ was distributed ubiquitously in all the detected tissues and immune cells, which was highly expressed in the spleen, gills, head kidney by quantitative real-time PCR. The mRNA expression of SsIFN-γ was significantly upregulated in the spleen, head kidney, head kidney (HK) macrophages and peripheral blood lymphocytes (PBLs) during pathogen infection. Meanwhile, the recombinant protein (rSsIFN-γ) exhibited an immunomodulatory function to enhance respiratory burst activity and nitric oxide response of HK macrophages. Furthermore, rSsIFN-γ could effectively upregulate the expression of macrophage proinflammatory cytokine, the expression of JAK-STAT signaling pathway related genes and interferon-related downstream genes in the head kidney and spleen. Luciferase assays showed ISRE and GAS activity were obviously enhanced after rSsIFN-γ treatment. These results indicated that SsIFN-γ possessed apparent immunoregulatory properties and played a role in fighting pathogen infection which will be helpful to further understanding of the immunologic mechanism of teleosts IFN-γ in innate immunity.


Assuntos
Interferon gama , Perciformes , Animais , Transdução de Sinais , Janus Quinases/genética , Sequência de Aminoácidos , Fatores de Transcrição STAT/genética , Citocinas/metabolismo , Proteínas Recombinantes/genética , Mamíferos/metabolismo
18.
Inorg Chem ; 62(26): 10256-10262, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37344358

RESUMO

Two-dimensional metal-organic framework (MOF) crystalline materials possess promising potential in the electrochemical sensing process owing to their tunable structures, high specific surface area, and abundant metal active sites; however, developing MOF-based nonenzymatic glucose (Glu) sensors which combine electrochemical activity and environmental stability remains a challenge. Herein, utilizing the tripodic nitrogen-bridged 1,3,5-tris(1-imidazolyl) benzene (TIB) linker, Co2+ and Ni2+, two 2D isomorphic crystalline materials, including Co/Ni-MOF {[Co (TIB)]·2BF4} (CTGU-31) and {[Ni(TIB)]·2NO3} (CTGU-32), with a binodal (3, 6)-connected kgd topological net were firstly synthesized and fabricated with conducting acetylene black (AB). When modified on a glassy carbon electrode, the optimized AB/CTGU-32 (1:1) electrocatalyst demonstrated a higher sensitivity of 2.198 µA µM-1 cm-2, a wider linear range from 10 to 4000 µM, and a lower detection limit (LOD) value (0.09 µM, S/N = 3) compared to previously MOF-based Glu sensors. Moreover, AB/CTGU-32 (1:1) exhibited desirable stability for at least 2000 s during the electrochemical process. The work indicates that MOF-based electrocatalysts are a promising candidate for monitoring Glu and demonstrate their potential for preliminary screening for diabetes.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Carbono/química , Níquel/química , Eletrodos , Acetileno , Glucose/química
19.
Fish Shellfish Immunol ; 136: 108715, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001746

RESUMO

As an effective and broad-spectrum antimicrobial peptide, NK-Lysin is attracted more and more attention at present. However, the functions and action mechanism of NK-Lysin peptides are still not comprehensive enough at present. In this study, a sevenband grouper (Hyporthodus septemfasciatus) NK-Lysin peptide, NKHs27, was identified and synthesized, and its biological functions were studied. The results indicated that NKHs27 shares 44.44%∼88.89% overall sequence identities with other teleost NK-Lysin peptides. The following antibacterial activity assay exhibited that NKHs27 was active against both Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Listonella anguillarum, Vibrio parahaemolyticus and Vibrio vulnificus. Additionally, NKHs27 showed a synergistic effect when it was combined with rifampicin or erythromycin. In the process of interaction with the L. anguillarum cells, NKHs27 changed the cell membrane permeability and retained its morphological integrity, then penetrated into the cytoplasm to act on genomic DNA or total RNA. Then, in vitro studies showed that NKHs27 could enhance the respiratory burst ability of macrophages and upregulate immune-related genes expression in it. Moreover, NKHs27 incubation improved the proliferation of peripheral blood leukocytes significantly. Finally, in vivo studies showed that administration of NKHs27 prior to bacterial infection significantly reduced pathogen dissemination and replication in tissues. In summary, these results provide new insights into the function of NK-Lysin peptides in teleost and support that NKHs27, as a novel broad-spectrum antibacterial peptide, has potential applications in aquaculture against pathogenic infections.


Assuntos
Bass , Infecções Estafilocócicas , Animais , Bass/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Proteínas de Peixes/metabolismo , Proteolipídeos/genética , Peptídeos , Antibacterianos
20.
Org Biomol Chem ; 21(6): 1235-1241, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36633208

RESUMO

Preparation of alkyl fluorides and carbonates via divergent dehydroxyfluorination and carbonation of alcohols with trifluoromethyl trifluoromethanesulfonate (CF3SO2OCF3) is described. The reactions performed with BTMG in THF provided alkyl fluorides in good yields, whereas those of two different alcohols with Et3N in DCM formed asymmetric carbonates in moderate to excellent yields. CF3SO2OCF3 was demonstrated to be either a "F" or a "CO" reagent in the reactions by changing the base, allowing the selective construction of alkyl fluorides and carbonates from the corresponding alcohols with high efficiency. Notably, the fluorine-containing asymmetric carbonates that are difficult to synthesize by other methods were comprehensively prepared by this method, which would have great application potential in both academic and industrial fields.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa