RESUMO
Topological defects are widely recognized as effective active sites toward a variety of electrochemical reactions. However, the role of defect curvature is still not fully understood. Herein, carbon nanomaterials with rich topological defect sites of tunable curvature is reported. The curved defective surface is realized by controlling the high-temperature pyrolytic shrinkage process of precursors. Theoretical calculations demonstrate bending the defect sites can change the local electronic structure, promote the charge transfer to key intermediates, and lower the energy barrier for oxygen reduction reaction (ORR). Experimental results convince structural superiority of highly-curved defective sites, with a high kinetic current density of 22.5 mA cm-2 at 0.8 V versus RHE for high-curvature defective carbon (HCDC), ≈18 times that of low-curvature defective carbon (LCDC). Further raising the defect densities in HCDC leads to the dual-regulated products (HCHDC), which exhibit exceptionally outstanding ORR activity in both alkaline and acidic media (half-wave potentials: 0.88 and 0.74 V), outperforming most of the reported metal-free carbon catalysts. This work uncovers the curvature-activity relationship in carbon defect for ORR and provides new guidance to design advanced catalysts via curvature-engineering.
RESUMO
Methanol is not only a promising liquid hydrogen carrier but also an important feedstock chemical for chemical synthesis. Catalyst design is vital for enabling the reactions to occur under ambient conditions. This study reports a new class of van der Waals heterojunction photocatalyst, which is synthesized by hot-injection method, whereby carbon dots (CDs) are grown in situ on ZnSe nanoplatelets (NPLs), i.e., metal chalcogenide quantum wells. The resultant organic-inorganic hybrid nanoparticles, CD-NPLs, are able to perform methanol dehydrogenation through CH splitting. The heterostructure has enabled light-induced charge transfer from the CDs into the NPLs occurring on a sub-nanosecond timescale, with charges remaining separated across the CD-NPLs heterostructure for longer than 500 ns. This resulted in significantly heightened H2 production rate of 107 µmole·g-1·h-1 and enhanced photocurrent density up to 34 µA cm-2 at 1 V bias potential. EPR and NMR analyses confirmed the occurrence of α-CH splitting and CC coupling. The novel CD-based organic-inorganic semiconductor heterojunction is poised to enable the discovery of a host of new nano-hybrid photocatalysts with full tunability in the band structure, charge transfer, and divergent surface chemistry for guiding photoredox pathways and accelerating reaction rates.
RESUMO
Designing a facile strategy to prepare catalysts with highly active sites are challenging for large-scale implementation of electrochemical hydrogen production. Herein, a straightforward and eco-friendly method by high-energy mechanochemical ball milling for mass production of atomic Ru dispersive in defective MoS2 catalysts (Ru1 @D-MoS2 ) is developed. It is found that single atomic Ru doping induces the generation of S vacancies, which can break the electronic neutrality around Ru atoms, leading to an asymmetrical distribution of electrons. It is also demonstrated that the Ru1 @D-MoS2 exhibits superb alkaline hydrogen evolution enhancement, possibly attributing to this electronic asymmetry. The overpotential required to deliver a current density of 10 mA cm-2 is as low as 107 mV, which is much lower than that of commercial MoS2 (C-MoS2 , 364 mV). Further density functional theory (DFT) calculations also support that the vacancy-coupled single Ru enables much higher electronic distribution asymmetry degree, which could regulate the adsorption energy of intermediates, favoring the water dissociation and the adsorption/desorption of H*. Besides, the long-term stability test under 500 mA cm-2 further confirms the robust performance of Ru1 @D-MoS2 . Our strategy provides a promising and practical way towards large-scale preparation of advanced HER catalysts for commercial applications.
RESUMO
The coordinated configuration of atomic platinum (Pt) has always been identified as an active site with high intrinsic activity for hydrogen evolution reaction (HER). Herein, we purposely synthesize single vacancies in a carbon matrix (defective graphene) that can trap atomic Pt to form the Pt-C3 configuration, which gives exceptionally high reactivity for HER in both acidic and alkaline solutions. The intrinsic activity of Pt-C3 site is valued with a turnover frequency (TOF) of 26.41 s-1 and mass activity of 26.05 A g-1 at 100 mV, respectively, which are both nearly 18 times higher than those of commercial 20 wt % Pt/C. It is revealed that the optimal coordination Pt-C3 has a stronger electron-capture ability and lower Gibbs free energy difference (ΔG), resulting in promoting the reduction of adsorbed H+ and the acceleration of H2 desorption, thus exhibiting the extraordinary HER activity. This work provides a new insight on the unique coordinated configuration of dispersive atomic Pt in defective C matrix for superior HER performance.
RESUMO
The exploration of highly active and durable cathodic oxygen reduction reaction (ORR) catalysts with economical production costs is still the bottleneck to realize the large-scale commercialization of fuel cells. In recent years, remarkable progress has been achieved in fabricating effective non-precious metal based ORR catalysts. In particular, modified carbon materials have aroused extensive research interest because of their excellent performance and low cost. In this review, we present an overview on recent advancements in developing defective carbon based materials for catalyzing the ORR. In particular, three general kinds of defective carbon electrocatalysts will be summarized. They are non-metal induced defective carbons (modified by heteroatoms), intrinsic defective carbons (defects created by a physical or chemical method), and atomic metal species induced/coordinated defective carbons (metal-macrocycle complexes with different coordination environments). The common configurations of various defective carbons will be discussed, with typical examples on recently developed both metal-free and precious/non-precious metal species coordinated carbons. Finally, the future research directions of the defective carbon materials are proposed. The newly established defect promoted catalysis mechanism will be beneficial for the design and fabrication of highly effective electrocatalysts for practical energy storage and conversion applications.
RESUMO
Atomic metal species-based catalysts (AMCs) show remarkable possibilities in various catalytic reactions. The coordination configuration of the metal atoms has been widely recognized as the determining factor to the electronic structure and the catalytic activity. However, the synergistic effect between the adjacent layers of the multilayered AMCs is always neglected. We reported an atomic Co and Pt co-trapped carbon catalyst, which exhibits a ultrahigh activity for HER in the wide range of pH (η10 =27 and 50â mV in acidic and alkaline media, respectively) with ultralow metal loadings (1.72 and 0.16â wt % for Co and Pt, respectively), which is much superior to the commercial Pt/C. Theoretical analysis reveals that the atomic metals on the inner graphitic layers significantly alter the electronic structure of the outmost layer, thus tailoring the HER activity. This finding arouses a re-thinking of the intrinsic activity origins of AMCs and suggests a new avenue in the structure design of AMCs.
RESUMO
Platinum (Pt) is the state-of-the-art catalyst for oxygen reduction reaction (ORR), but its high cost and scarcity limit its large-scale use. However, if the usage of Pt reduces to a sufficiently low level, this critical barrier may be overcome. Atomically dispersed metal catalysts with high activity and high atom efficiency have the possibility to achieve this goal. Herein, we report a locally distributed atomic Pt-Co nitrogen-carbon-based catalyst (denoted as A-CoPt-NC) with high activity and robust durability for ORR (267 times higher than commercial Pt/C in mass activity). The A-CoPt-NC shows a high selectivity for the 4e- pathway in ORR, differing from the reported 2e- pathway characteristic of atomic Pt catalysts. Density functional theory calculations suggest that this high activity originates from the synergistic effect of atomic Pt-Co located on a defected C/N graphene surface. The mechanism is thought to arise from asymmetry in the electron distribution around the Pt/Co metal centers, as well as the metal atoms' coordination with local environments on the carbon surface. This coordination results from N8V4 vacancies (where N8 represents the number of nitrogen atoms and V4 indicates the number of vacant carbon atoms) within the carbon shell, which enhances the oxygen reduction reaction via the so-called synergistic effect.
RESUMO
Sustainable hydrogen production is an essential prerequisite for realizing the future hydrogen economy. The electrocatalytic hydrogen evolution reaction (HER), as the cornerstone of exploring the mechanism of water electrolysis, has attracted extensive interest in the past decades. Carbon-based materials with significant merits such as abundance, low cost, high conductivity, and tunable molecular structures, are considered as promising candidates for replacing the commercial noble metal electrocatalysts. To date, activity origins of these carbon-based electrocatalysts are mainly attributed to the dopants (e.g., N, B, P or S), whereas the contribution of intrinsic/induced carbon defects has recently been a hot research topic. In this Review, besides the development of heteroatoms doping strategies, the latest studies on defective carbon-based materials for HER electrocatalysis are summarized, especially for various approaches to prepare defective carbons and the detailed introduction regarding the defect catalysis mechanism. Finally, an outlook into the development of future defective carbon-based HER electrocatalysts is presented.
RESUMO
Various strategies, such as increasing active site numbers and structural and surface engineering, have been used to improve the oxygen evolution reaction (OER) performance of transition-metal dichalcogenides. However, it is challenging to combine these strategies in one system to realize the full catalytic potential. Now, an Ar/O2 plasma method is used to simultaneously induce exfoliation, surface reorganization (formation of an oxidative layer with rich oxygen vacancies), and phase transformation (cubic-to-orthorhombic) on CoSe2 to generate an exceptionally outstanding OER electrocatalysts. The as-made samples require an overpotential of only 251â mV at 10â mA cm-2 , outperforming commercial RuO2 and most reported OER catalysts. The striking catalytic activity originates from the optimized chemical and electronic environment. This work provides valuable insights into the design of promising OER electrocatalysts with high natural abundance via multilevel structural modulation.
RESUMO
Multishell Y2 O3 :Yb(3+) /Er(3+) hollow spheres with uniform morphologies and controllable inner structures are prepared successfully by using a glucose-template hydrothermal process followed by temperature-programmed calcination. Much enhanced upconverted photoluminescence of these Y2 O3 :Yb(3+) /Er(3+) are observed, which are due to the multiple reflections and the enhanced light-harvesting efficiency of the NIR light resulting from the special features of the multishell structures.
RESUMO
By adjusting experimental parameters, such as reaction time and ratios, CeO2/CePO4 composites have been prepared through a single-step hydrothermal process, in which CeO2 octahedra and CePO4 nanowires mingled with each other to form many interfaces. The formation of the particular structure can be explained by heterogeneous nucleation theory: the existed CePO4 nanowires at the early stage of hydrothermal process provide many thermodynamically favorable sites, on which the nucleation energy of octahedral CeO2 is the lowest. The photoluminescent (PL) properties of CeO2/CePO4 composites showed that the strongest PL emission can be achieved with initial Ce/P of 4 and hydrothermal time of 24 h. And final Ce/P of the samples at this point was the maximum value by the EDS analysis. So it was proposed that the interaction between more CeO2 and the more coatings of CeO2 to CePO4 are responsible for the best PL properties.
RESUMO
Fusarium wilt of Momordica charantia in the greenhouse is one of the most severe crop diseases in Shandong Province, P.R. China. This study aimed to investigate the mechanisms of accumulation and long-term survival of the pathogen in naturally pathogenic soils. Soil physicochemical properties were tested after applying a highly virulent strain of Fusarium wilt to M. charantia in an artificial disease nursery. The functional structure of soil microorganisms was analyzed through amplicon sequencing. The highly virulent strain SG-15 of F. oxysporum f. sp. momordicae was found to cause Fusarium wilt in M. charantia in Shandong Province. The strain SG-15 could not infect 14 non-host crops, including Solanum melongena and Lycopersicon esculentum, but it had varying degrees of pathogenicity towards 11 M. charantia varieties. In the artificial disease nursery for Fusarium wilt of M. charantia, the F. oxysporum was distributed in the soil to a depth of 0-40 cm and was mainly distributed in crop residues at 0-10 cm depth. During crop growth, F. oxysporum primarily grows and reproduces in susceptible host plants, rather than disease-resistant hosts and non-host crops. The colonization of the pathogen of Fusarium wilt significantly changed the soil physicochemical properties, the functional structure of soil microorganisms and the circulation of soil elements such as carbon, nitrogen, phosphorus and sulfur. Soil pH value, organic matter content, available iron content, available manganese content, FDA hydrolase activity and polyphenol oxidase activity were significantly correlated with the relative abundance of Fusarium wilt pathogens in the soil. In general, this study suggests that susceptible host plants facilitate the accumulation of Fusarium wilt pathogens in the soil. These pathogens can mediate the decomposition process of plant residues, particularly those of diseased plants, and indirectly or directly affect soil's chemical properties.
RESUMO
Low-dimensional carbon-based (LDC) materials have attracted extensive research attention in electrocatalysis because of their unique advantages such as structural diversity, low cost, and chemical tolerance. They have been widely used in a broad range of electrochemical reactions to relieve environmental pollution and energy crisis. Typical examples include hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Traditional "trial and error" strategies greatly slowed down the rational design of electrocatalysts for these important applications. Recent studies show that the combination of density functional theory (DFT) calculations and experimental research is capable of accurately predicting the structures of electrocatalysts, thus revealing the catalytic mechanisms. Herein, current well-recognized collaboration methods of theory and practice are reviewed. The commonly used calculation methods and the basic functionals are briefly summarized. Special attention is paid to descriptors that are widely accepted as a bridge linking the structure and activity and the breakthroughs for high-volume accurate prediction of electrocatalysts. Importantly, correlated multiple descriptors are used to systematically describe the complicated interfacial electrocatalytic processes of LDC catalysts. Furthermore, machine learning and high-throughput simulations are crucial in assisting the discovery of new multiple descriptors and reaction mechanisms. This review will guide the further development of LDC electrocatalysts for extended applications from the aspect of DFT computations.
RESUMO
Active sites identification in metal-free carbon materials is crucial for developing practical electrocatalysts, but resolving precise configuration of active site remains a challenge because of the elusive dynamic structural evolution process during reactions. Here, we reveal the dynamic active site identification process of oxygen modified defective graphene. First, the defect density and types of oxygen groups were precisely manipulated on graphene, combined with electrocatalytic performance evaluation, revealing a previously overlooked positive correlation relationship between the defect density and the 2 e- oxygen reduction performance. An electrocatalytic-driven oxygen groups redistribution phenomenon was observed, which narrows the scope of potential configurations of the active site. The dynamic evolution processes are monitored via multiple in-situ technologies and theoretical spectra simulations, resolving the configuration of major active sites (carbonyl on pentagon defect) and key intermediates (*OOH), in-depth understanding the catalytic mechanism and providing a research paradigm for metal-free carbon materials.
RESUMO
Cancers heavily threaten human life; therefore, a high-accuracy diagnosis is vital to protect human beings from the suffering of cancers. While biopsies and imaging methods are widely used as current technologies for cancer diagnosis, a new detection platform by metabolic analysis is expected due to the significant advantages of fast, simple, and cost-effectiveness with high body tolerance. However, the signal of molecule biomarkers is too weak to acquire high-accuracy diagnosis. Herein, precisely engineered metal-organic frameworks for laser desorption/ionization mass spectrometry, allowing favorable charge transfer within the molecule-substrate interface and mitigated thermal dissipation by adjusting the phonon scattering with metal nodes, are developed. Consequently, a surprising signal enhancement of ≈10 000-fold is achieved, resulting in diagnosis of three major cancers (liver/lung/kidney cancer) with area-under-the-curve of 0.908-0.964 and accuracy of 83.2%-90.6%, which promises a universal detection tool for large-scale clinical diagnosis of human cancers.
Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Estruturas Metalorgânicas/química , Metais/química , Neoplasias/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
Electrocatalysis plays a decisive role in various energy-related applications. Engineering the active sites of electrocatalysts is an important aspect to promote their catalytic performance. In particular, defect engineering provides a feasible and efficient approach to improve the intrinsic activities and increase the number of active sites in electrocatalysts. In this review, recent investigations on defect engineering of a wide range of electrocatalysts such as metal-free carbon materials, transition metal oxides, transition metal dichalcogenides and metal-organic frameworks (MOFs) will be summarized. Different defect creation strategies will be outlined, for example, heteroatom doping and removal, plasma irradiation, hydrogenation, amorphization, phase transition and reduction treatment. In addition, we will overview the commonly used advanced characterization techniques that could confirm the existence and identify the detailed structures, types and concentration of defects in electrocatalysts. The defect characterization tools are beneficial for gaining an in-depth understanding of defects on electrocatalysis and thus could reveal the structure-performance relationship. Finally, the major challenges and future development directions on defect engineering of electrocatalysts will be discussed.
RESUMO
Controllably constructing nitrogen-modified divacancies (ND) in carbon substrates to immobilize atomic Fe species and unveiling the advantageous configuration is still challenging, but indispensable for attaining optimal Fe-N-C catalysts for the oxygen reduction reaction (ORR). Herein, a fundamental investigation of unfolding intrinsically superior edge-ND trapped atomic Fe motifs (e-ND-Fe) relative to an intact center model (c-ND-Fe) in ORR electrocatalysis is reported. Density functional theory calculations reveal that local electronic redistribution and bandgap shrinkage for e-ND-Fe endow it with a lower free-energy barrier toward direct four-electron ORR. Inspired by this, a series of atomic Fe catalysts with adjustable ND-Fe coordination are synthesized, which verify that ORR performance highly depends on the concentration of e-ND-Fe species. Remarkably, the best e-ND-Fe catalyst delivers a favorable kinetic current density and halfwave potential that can be comparable to benchmark Pt-C under acidic conditions. This work will guide to develop highly active atomic metal catalysts through rational defect engineering.
RESUMO
Cobalt diselenide (CoSe2) has been demonstrated to be an efficient and economic electrocatalyst for oxygen evolution reaction (OER) both experimentally and theoretically. However, the catalytic performance of up-to-now reported CoSe2-based OER catalysts is still far below commercial expectation. Herein, we report a hybrid catalyst consisting of CoSe2 nanosheets grafted on defective graphene (DG). This catalyst exhibits a largely enhanced OER activity and robust stability in alkaline solution (overpotential at 10 mA cm-2: 270 mV; Tafel plots: 64 mV dec-1). Both experimental evidence and density functional theory calculations reveal that the outstanding OER performance of this hybrid catalyst can be attributed to the synergetic effect of exposed cobalt atoms and carbon defects (electron transfer from CoSe2 layer to defect sites at DG). Our results suggest a promising way for the development of highly efficient and low-cost OER catalysts based on transition metal dichalcogenides.
RESUMO
A cost-effective hexagonal sphericon hematite with predominant (110) facets for the oxygen evolution reaction (OER) is demonstrated. Sequential incorporation of near-atomic uniformly distributed Ce species and Ni nanoparticles into selected sites of the hematite induces a complex synergistic integration phenomenon that enhances the overall catalytic OER performance. This cheap hexagonal sphericon hematite (Fe ≈ 98%) only needs a small overpotential (η) of 0.34 V to reach 10 mA cm-2 , superior to commercial IrO2 and more expensive Co-, Ni-, and Li-based electrocatalysts.
RESUMO
A non-precious FeCo nanoparticle decorated defective graphene (DG) sample, DG@FeCo, was successfully synthesized via a facile impregnation method. It is shown that DG@FeCo exhibits similar oxygen reduction reaction activity to that of commercial Pt/C, but has much better durability and is free from methanol poisoning in alkaline electrolytes.