Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Am Chem Soc ; 145(32): 17995-18006, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37550082

RESUMO

The acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolyzers given its harsh oxidative and corrosive environments. Herein, we suggest an effective strategy to greatly enhance both the acidic OER activity and stability of Co3O4 spinel by atomic Ru selective substitution on the octahedral Co sites. The resulting highly symmetrical octahedral Ru-O-Co collaborative coordination with strong electron coupling effect enables the direct dioxygen radical coupling OER pathway. Indeed, both experiments and theoretical calculations reveal a thermodynamically breakthrough heterogeneous diatomic oxygen mechanism. Additionally, the active Ru-O-Co units are well-maintained upon the acidic OER thanks to the electron transfer from surrounding electron-enriched tetrahedral Co atoms via bridging oxygen bonds that suppresses the overoxidation and thus dissolution of active Ru and Co species. Consequently, the prepared catalyst, even with a low Ru mass loading of ca. 42.8 µg cm-2, exhibits an attractive acidic OER performance with a low overpotential of 200 mV and a low potential decay rate of 0.45 mV h-1 at 10 mA cm-2. Our work suggests an effective strategy to significantly enhance both the acidic OER activity and stability of low-cost electrocatalysts.

2.
Small ; 19(32): e2300807, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086117

RESUMO

Designing a facile strategy to prepare catalysts with highly active sites are challenging for large-scale implementation of electrochemical hydrogen production. Herein, a straightforward and eco-friendly method by high-energy mechanochemical ball milling for mass production of atomic Ru dispersive in defective MoS2 catalysts (Ru1 @D-MoS2 ) is developed. It is found that single atomic Ru doping induces the generation of S vacancies, which can break the electronic neutrality around Ru atoms, leading to an asymmetrical distribution of electrons. It is also demonstrated that the Ru1 @D-MoS2 exhibits superb alkaline hydrogen evolution enhancement, possibly attributing to this electronic asymmetry. The overpotential required to deliver a current density of 10 mA cm-2 is as low as 107 mV, which is much lower than that of commercial MoS2 (C-MoS2 , 364 mV). Further density functional theory (DFT) calculations also support that the vacancy-coupled single Ru enables much higher electronic distribution asymmetry degree, which could regulate the adsorption energy of intermediates, favoring the water dissociation and the adsorption/desorption of H*. Besides, the long-term stability test under 500 mA cm-2 further confirms the robust performance of Ru1 @D-MoS2 . Our strategy provides a promising and practical way towards large-scale preparation of advanced HER catalysts for commercial applications.

3.
Vet Res ; 54(1): 37, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095544

RESUMO

The nasal mucosa is constantly exposed to inhaled pathogens and is the first defence against respiratory infections. Here, we investigated the structural and compositional characteristics of the nasal mucosa of commercial pigs at various growth stages. The epithelial thickness, number of capillaries, and secretion function of the nasal mucosa dramatically increased with age; however, underlying lymphoid follicles in the respiratory region were rarely observed across the growth stages. The nasal mucosa was explored at the epithelial, immunological, and biological (commensal microbiota) barriers. In the epithelial barrier, the proliferative capacity of the nasal epithelia and the expression of tight junction proteins were high after birth; however, they decreased significantly during the suckling stage and increased again during the weaning stage. In the immunological barrier, most pattern recognition receptors were expressed at very low levels in neonatal piglets, and the innate immune cell distribution was lower. During the suckling stage, increased expression of Toll-like receptor (TLR) 2 and TLR4 was observed; however, TLR3 expression decreased. TLR expression and innate immune cell quantity significantly increased from the weaning to the finishing stage. In the biological barrier, Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes comprised the dominant phyla in neonatal piglets. A dramatic decrease in nasal microbial diversity was observed during the suckling stage, accompanied by an increase in potentially pathogenic bacteria. Proteobacteria, Bacteroidetes, and Firmicutes were identified as the core phyla of the nasal microbiota; among these, the three dominant genera, Actinobacter, Moraxella, and Bergerella, may be opportunistic pathogens in the respiratory tract. These characteristics comprise an essential reference for respiratory infection prevention at large-scale pig farms.


Assuntos
Actinobacteria , Microbiota , Animais , Suínos , Mucosa Nasal , Bactérias , Fazendas
4.
Phys Chem Chem Phys ; 25(37): 25639-25653, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721171

RESUMO

In the present study, synchrotron-based X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) have been used to investigate the induced defect states in metal oxide nanomaterials. Specifically, two synthesis approaches have been followed to develop unique nano-sized peanut-shaped (N-ZnO) nanostructures and micron-sized hexagonal rods (M-ZnO). XANES analysis at the Zn K-edge revealed the presence of defect states with a divalent oxidation state of zinc (Zn2+) in a tetrahedral structure. Furthermore, XAS measurements performed at the Zn L3,2-edge and O K-edge confirm higher oxygen-related defects in M-ZnO, while N-ZnO appeared to have a higher concentration of surface defects due to size confinement. Moreover, the in-line XEOL and time dependent-XEOL measurements exposed the radiative excitonic recombination phenomena occurring in the band-tailing region as a function of absorption length, X-ray energy excitation, and time. Based on the chronology developed in the defect state improvement, a possible energy band diagram is proposed to accurately locate the defect states in the two systems. Furthermore, the increased absorption intensity at the Zn L3,2-edge and the O K-edge under the UV lamp suggests delayed recombination of electrons and holes, highlighting their potential use as photo catalysts. The photocatalytic activity degrading the rhodamine B dye established M-ZnO as a superior catalyst with a rapid degradation rate and significant mineralization. Overall, this work provides valuable insights into ZnO defect states and provides a foundation for efficient advanced materials for environmental or other optoelectronic applications.

5.
Bioorg Chem ; 139: 106652, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37390632

RESUMO

Primary liver cancer is one of the most common malignant cancers of the digestive system that lacks effective chemotherapeutic drugs in clinical settings. Camptothecin (CPT) and its derivatives have been approved for cancer treatment; however, their application is limited by their systemic toxicity. For lead optimization in new drug discovery stages, fluorination is an effective and robust approach to increase the bioavailability and optimize the pharmacokinetics of candidate compounds, thereby improving their efficacy. To obtain new and highly active CPT derivatives, we designed, synthesized, and evaluated two new fluorinated CPT derivatives, 9-fluorocamptothecin (A1) and 7-ethyl-9-fluorocamptothecin (A2), in this study. In vitro, A1 and A2 exhibited more robust anti-tumor activity than topotecan (TPT) in various cancer cells, particularly hepatocellular carcinoma (HCC) cells. In vivo, A1 and A2 exhibited greater anti-tumor activity than TPT in both AKT/Met induced primary HCC mouse models and implanted HepG2 cell xenografts. Acute toxicity tests revealed that A1 and A2 were not lethal and did not cause significant body weight loss at high doses. Moreover, A1 and A2 exhibited no significant toxicity in the mouse liver, heart, lung, spleen, kidney, and hematopoietic systems at therapeutic doses. Mechanistically, A1 and A2 blocked HCC cell proliferation by inhibiting the enzymatic activity of Topo I, subsequently inducing DNA damage, cell cycle arrest, and apoptosis. In summary, our results indicate that fluorination improves the anti-tumor activity of CPT while decreasing its toxicity and highlight the application potential of fluorination products A1 and A2 in clinical settings.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , DNA Topoisomerases Tipo I/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Topotecan/farmacologia , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
BMC Vet Res ; 19(1): 280, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115003

RESUMO

Specific antibodies produced sow by oral porcine epidemic diarrhea virus (PEDV) vaccines would transfer to newborn piglets via colostrum, and it is an effective strategy to prevent porcine epidemic diarrhea (PED). However, there is a lag in the development of corresponding vaccines due to the rapid mutation of PEDV, which could increase the difficulty of PED prevention and control in pig farms. Hence, congenital lactogenic immunity was assessed by feeding 4,4'-diaponeurosporene-producing Bacillus subtilis (B.S-Dia) to sow on the 80th day of gestation in order to protect newborn piglets from PEDV infection. Firstly, we found that the quantities of T lymphocytes and monocytes in the blood and colostrum after oral administration of B.S-Dia were significantly increased as observed by flow cytometry, whereas the proliferative activity of T lymphocytes in colostrum was also markedly increased. Furthermore, enzyme-linked immunosorbent assay (ELISA) results revealed that levels of TGF (Transforming growth factor) -ß, Interleukin (IL) -6, lysozyme and lactoferrin were significantly increased. Finally, it was found in the piglets' challenge protection test that offspring pigs of the sows feeding B.S-Dia during pregnancy did not develop diarrhea symptoms and intestinal pathological changes at 48 h after infection with PEDV, and PEDV load in the jejunum and ileum was significantly reduced, but offspring pigs of the sows taking orally PBS during pregnancy developed pronounced diarrhea symptoms and extensive PEDV colonization was noted both in the jejunum and ileum. In summary, sow by oral administration of B.S-Dia substantially increased congenital lactogenic immunity, thereby preventing newborn piglets from being infected with PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas , Gravidez , Feminino , Animais , Suínos , Anticorpos Antivirais , Bacillus subtilis , Diarreia/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária
7.
Bioorg Chem ; 122: 105747, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35338969

RESUMO

Based on the structural skeleton of natural products boeravinones, two types of 6H-chromeno[3,4-b]quinoline derivatives were designed and synthesized by nitrogen atom substitution strategy. Then, their cytotoxic activities were evaluated against six human tumor cell lines including HepG2 (hepatocellular carcinoma), A2780 (ovarian cancer), Hela (cervical cancer), HCT116 (colorectal cancer), SW1990 (pancreatic cancer), and MCF7 (breast cancer). The results showed that compounds ZML-8 and ZML-14 exhibited robust inhibitory activities against HepG2 cells with IC50 values of 0.58 and 1.94 µM, respectively. In addition, ZML-8 and ZML-14 showed higher selectivity against HepG2 and L-02 cells than Topotecan. Mechanistically, ZML-8 and ZML-14 not only induced cell cycle arrest in the G2/M phase and cell apoptosis, but also dose-dependently inhibited topoisomerase I activity and induced DNA damage in HepG2 cells. Molecular docking showed that ZML-8 and ZML-14 could interact with topoisomerase I-DNA complex with a similar binding mode to Topotecan. Inhibitory activities of these two compounds on topoisomerase I were then confirmed in both cell-free systems and in whole-cell lysates. Taken together, compounds ZML-8 and ZML-14 merit further development as a new generation of non-camptothecin topoisomerase I inhibitors for the treatment of cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase I , Inibidores da Topoisomerase II/farmacologia
8.
J Enzyme Inhib Med Chem ; 37(1): 1212-1226, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35450499

RESUMO

A series of novel derivatives of isaindigotone, which comes from the root of isaits indinatca Fort, were synthesised (Compound 1-26). Four human gastrointestinal cancer cells (HCT116, PANC-1, SMMC-7721, and AGS) were employed to evaluate the anti-proliferative activity. Among them, Compound 6 displayed the most effective inhibitory activity on AGS cells with an IC50 (50% inhibitory concentration) value of 2.2 µM. The potential mechanism study suggested that Compound 6 induced apoptosis in AGS cells. The collapse of mitochondrial membrane potential (MMP) in AGS cells was proved. In docking analysis, good affinity interaction between Compound 6 and AKT1 was discovered. Treatment of AGS cells with Compound 6 also resulted in significant suppression of PI3K/AKT/mTOR signal pathway. The collapse of MMP and suppression of PI3K/AKT/mTOR signal pathway may be responsible for induction of apoptosis. This derivative Compound 6 could be useful as an underlying anti-tumour agent for treatment of gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Alcaloides , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Quinazolinas , Neoplasias Gástricas/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo
9.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887375

RESUMO

Isaindigotone is an alkaloid containing a pyrrolo-[2,1-b]quinazoline moiety conjugated with a benzylidene group and isolated from the root of Isatis indigotca Fort. However, further anticancer activities of this alkaloid and its derivatives have not been fully explored. In this work, a novel isaindigotone derivative was synthesized and three different gastric cell lines and one human epithelial gastric cell line were used to study the anti-proliferation effects of the novel isaindigotone derivative BLG26. HGC27 cells and AGS cells were used to further explore the potential mechanisms. BLG26 exhibited better anti-proliferation activities in AGS cells with a half-maximal inhibitory concentration (IC50) of 1.45 µM. BLG26 caused mitochondrial membrane potential loss and induced apoptosis in both HGC27 cells and AGS cells by suppressing mitochondrial apoptotic pathway and PI3K/AKT/mTOR axis. Acute toxicity experiment showed that LD50 (median lethal dose) of BLG26 was above 1000.0 mg/kg. This research suggested that BLG26 can be a potential candidate for the treatment of gastric cancer.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias Gástricas , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
10.
Phys Rev Lett ; 127(12): 121601, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597073

RESUMO

We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient.

11.
Bioorg Chem ; 114: 105065, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174631

RESUMO

29 novel 20(S)-aminophosphonate derivatives of camptothecin were synthesized via a FeCl3 - catalyzed one-pot reaction. All of these compounds displayed similar or superior cytotoxic activity in comparison with that of Irinotecan against Hep3B, MCF-7, A-549, MDA-MB-231, KB, and multidrug-resistant (MDR) KB-vin cell lines. Out of them, compound B07 exhibited significant cytotoxicity and 10-fold improvement in activity compared to Irinotecan. Mechanistically, B07 not only induced cell apoptosis and cell cycle arrest in Hep3B and MCF-7 cells, but also inhibited Topoisomerase I activity in the cell and cell-free system in a manner similar to that of Irinotecan. In both xenograft and primary HCC mouse models, B07 showed significant anti-tumor activity and was more potent than Irinotecan. Additionally, the acute toxicity assay showed that B07 had no apparent toxicity to the mouse liver, kidney, and hemopoietic system of the FVB/N mice. Therefore, these findings indicate that compound B07 could be a potential Topoisomerase I poison drug candidate for further clinical trial.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/farmacologia , Desenho de Fármacos , Organofosfonatos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Camptotecina/síntese química , Camptotecina/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Organofosfonatos/síntese química , Organofosfonatos/química , Relação Estrutura-Atividade
12.
Chem Biodivers ; 18(12): e2100633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643056

RESUMO

The increasing resistance of plant diseases caused by phytopathogenic fungi highlights the need for highly effective and environmentally benign agents. The antifungal activities of Cnidium monnieri fruit extracts and five isolated compounds as well as structurally related coumarins against five plant pathogenic fungi were evaluated. The acetone extract, which contained the highest amount of five coumarins, showed strongest antifungal activity. Among the coumarin compounds, we found that 4-methoxycoumarin exhibited stronger and broader antifungal activity against five phytopathogenic fungi, and was more potent than osthol. Especially, it could significantly inhibit the growth of Rhizoctonia solani mycelium with an EC50 value of 21 µg mL-1 . Further studies showed that 4-methoxycoumarin affected the structure and function of peroxisomes, inhibited the ß-oxidation of fatty acids, decreased the production of ATP and acetyl coenzyme A, and then accumulated ROS by damaging MMP and the mitochondrial function to cause the cell death of R. solani mycelia. 4-Methoxycoumarin presented antifungal efficacy in a concentration- dependent manner in vivo and could be used to prevent the potato black scurf. This study laid the foundation for the future development of 4-methoxycournamin as an alternative and friendly biofungicide.


Assuntos
Antifúngicos/farmacologia , Cnidium/química , Cumarínicos/farmacologia , Frutas/química , Rhizoctonia/efeitos dos fármacos , Acetilcoenzima A/antagonistas & inibidores , Acetilcoenzima A/biossíntese , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cumarínicos/química , Cumarínicos/isolamento & purificação , Ácidos Graxos/antagonistas & inibidores , Ácidos Graxos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rhizoctonia/crescimento & desenvolvimento
13.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639194

RESUMO

Humulus lupulus Linn. is a traditional medicinal and edible plant with several biological properties. The aims of this work were: (1) to evaluate the in vitro antifungal activity of H. lupulus ethanolic extract; (2) to study the in vitro and in vivo antifungal activity of isoxanthohumol, an isoprene flavonoid from H. lupulus, against Botrytis cinerea; and (3) to explore the antifungal mechanism of isoxanthohumol on B. cinerea. The present data revealed that the ethanolic extract of H. lupulus exhibited moderate antifungal activity against the five tested phytopathogenic fungi in vitro, and isoxanthohumol showed highly significant antifungal activity against B. cinerea, with an EC50 value of 4.32 µg/mL. Meanwhile, it exhibited moderate to excellent protective and curative efficacies in vivo. The results of morphologic observation, RNA-seq, and physiological indicators revealed that the antifungal mechanism of isoxanthohumol is mainly related to metabolism; it affected the carbohydrate metabolic process, destroyed the tricarboxylic acid (TCA) cycle, and hindered the generation of ATP by inhibiting respiration. Further studies indicated that isoxanthohumol caused membrane lipid peroxidation, thus accelerating the death of B. cinerea. This study demonstrates that isoxanthohumol can be used as a potential botanical fungicide for the management of phytopathogenic fungi.


Assuntos
Trifosfato de Adenosina/metabolismo , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Humulus/química , Peroxidação de Lipídeos/efeitos dos fármacos , Xantonas/farmacologia , Botrytis/crescimento & desenvolvimento
14.
Med Res Rev ; 40(6): 2212-2289, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32729169

RESUMO

Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.


Assuntos
Alcaloides , Anti-Infecciosos , Alcaloides/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Humanos , Isoquinolinas/farmacologia
15.
Pestic Biochem Physiol ; 170: 104705, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980068

RESUMO

Magnolia officinalis, as a well-known herb worldwide, has been widely used to treat multiple diseases for a long time. In this study, the petroleum ether extract from M. officinalis showed effective antifungal activity against seven plant pathogens (particularly against R. solani with an inhibition rate of 100.00% at 250 µg/mL). Honokiol and magnolol, isolated by the bioassay-guided method, exhibited greater antifungal activity than tebuconazole (EC50 = 3.07 µg/mL, p ≤ 0.001) against R. solani, which EC50 values were 2.18 µg/mL and 3.48 µg/mL, respectively. We used transcriptomics to explore the mechanism of action of honokiol against R. solani. Results indicated that honokiol may exert antifungal effects by blocking the oxidative phosphorylation metabolic pathway. Further studies indicated that honokiol induced ROS overproduction, disrupted the mitochondrial function, affected respiration, and blocked the TCA cycle, which eventually inhibited ATP production. Besides, honokiol also damaged cell membranes and caused morphological changes. This study demonstrated that the lignans isolated from M. officinalis possess the potential to be developed as botanical fungicides.


Assuntos
Lignanas/farmacologia , Magnolia , Antifúngicos/farmacologia , Bioensaio , Compostos de Bifenilo
16.
Pestic Biochem Physiol ; 159: 51-58, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400784

RESUMO

Isoquinoline alkaloids possess broad pharmacological activities. In this study, the antifungal activity of twelve isoquinoline alkaloids, including berberine (1), jatrorrhizine (2), coptisine (3), corydaline (4), tetrahydroberberine (5), chelidonine (6), dihydrosanguinarine (7), chelerythrine (8), sanguinarine (9), palmatine (10), tetrahydropalmatine (11) and columbamine (12) were evaluated against eight plant pathogenic fungi in vitro. All the tested compounds showed varying degrees of inhibition against the eight tested plant fungi. Among them, sanguinarine exhibited high antifungal activity (EC50 ranging from 6.96-59.36 µg/mL). It displayed the best inhibitory activity against Magnaporthe oryzae (EC50 = 6.96 µg/mL), compared with azoxystrobin (EC50 = 12.04 µg/mL), and significantly suppressed spore germination of M. oryzae with the inhibition rate reaching 100% (50 µg/mL). The optical microscopy and scanning electron microscopy observations revealed that after treating M. oryzae mycelia with sanguinarine at 10 µg/mL, the mycelia appeared curved, collapsed and the cell membrane integrity was eventually damaged. Furthermore, the reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia had been changed, and the membrane function and cell proliferation of mycelia were destroyed. These results will enrich our insights into action mechanisms of antifungal activity of sanguinarine against M. oryzae.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Espécies Reativas de Oxigênio/metabolismo
17.
Bioorg Med Chem Lett ; 27(17): 3959-3962, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28789891

RESUMO

In our continuing search for camptothecin (CPT)-derived antitumor drugs, novel 7-substituted CPT derivatives incorporating piperazinyl-sulfonylamidine moieties were designed, synthesized and evaluated for cytotoxicity against five tumor cell lines (A-549, MDA-MB-231, MCF-7, KB, and KB-VIN). All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, and were more potent than irinotecan. Remarkably, most of the compounds exhibited comparable cytotoxicity against the multidrug-resistant (MDR) KB-VIN and parental KB tumor cell lines, while irinotecan lost activity completely against KB-VIN. Especially, compounds 13r and 13p (IC50 0.38 and 0.85µM, respectively) displayed the greatest cytotoxicity against the MDR KB-VIN cell line and merit further development into preclinical and clinical drug candidates for treating cancer, including MDR phenotype.


Assuntos
Amidinas/farmacologia , Antineoplásicos/farmacologia , Camptotecina/farmacologia , Desenho de Fármacos , Piperazinas/farmacologia , Amidinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Camptotecina/síntese química , Camptotecina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Piperazina , Piperazinas/química , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 27(20): 4694-4697, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28927790

RESUMO

Fluorination is a well-known strategy for improving the bioavailability of bioactive molecules in the lead optimization phase of drug discovery projects. In an attempt to improve the antitumor activity of camptothecins (CPTs), novel 10-fluoro-CPT derivatives were designed, synthesized and evaluated for cytotoxicity against five human cancer cell lines (A-549, MDA-MB-231, KB, KB-VIN and MCF-7). All of the derivatives showed more potent in vitro cytotoxic activity than the clinical CPT-derived drug irinotecan against the tumor cell lines tested, and most of them showed comparable or superior potency to topotecan. Remarkably, compounds 16b (IC50, 67.0nM) and 19b (IC50, 99.2nM) displayed the highest cytotoxicity against the multidrug-resistant (MDR) KB-VIN cell line and merit further development as preclinical drug candidates for treating cancer, including MDR phenotype. Our study suggested that incorporation of a fluorine atom into position 10 of CPT is an effective method for discovering new potent CPT derivatives.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Desenho de Fármacos , Antineoplásicos/química , Camptotecina/síntese química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Flúor/química , Humanos , Relação Estrutura-Atividade , Topotecan/farmacologia
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 31(4): 762-6, 2014 Aug.
Artigo em Zh | MEDLINE | ID: mdl-25464783

RESUMO

Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados P300 , Encéfalo/fisiologia , Humanos
20.
Heliyon ; 10(6): e27423, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496898

RESUMO

Global cerebral ischemia/reperfusion (GCI/R) injury poses a risk for cognitive decline, with neuroinflammation considered pivotal in this process. This study aimed to unravel the molecular mechanisms underlying GCI/R injury and propose a potential therapeutic strategy for associated cognitive deficits. Utilizing bioinformatics analysis of a public microarray profile (GSE30655 and GSE80681) in cerebral ischemic mice, it was observed that neuroinflammation emerged as a significant gene ontology item, with an increase in the expression of thioredoxin-interacting protein (TXNIP) and NLRP3 genes. Experimental models involving bilateral occlusion of the common carotid arteries in mice revealed that GCI/R induced cognitive impairment, along with a time-dependent increase in TXNIP and NLRP3 levels. Notably, TXNIP knockdown alleviated cognitive dysfunction in mice. Furthermore, the introduction of adeno-associated virus injection with TXNIP knockdown reduced the number of activated microglia, apoptosis neurons, and levels of oxidative stress and inflammatory cytokines in the hippocampus. Collectively, these findings underscore the significance of TXNIP/NLRP3 in the hippocampus in exacerbating cognitive decline due to GCI/R injury, suggesting that TXNIP knockdown holds promise as a therapeutic strategy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa