Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Dose Response ; 17(1): 1559325819828623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944552

RESUMO

The study aimed to develop a novel dose conversion platform by improving linear-quadratic (LQ) model to more accurately describe radiation response for high fraction/acute doses. This article modified the LQ model via piecewise fitting the biological dose curve using different fractionated dose and optimizing the consistency between mathematical model and experimental data to gain a more reasonable transform. That mathematical development of the LQ model further amended certain deviations of various cell curves with high doses and implied the rationality of the present model at low dose range. The modified biologically effective dose model that solved the dilemma of inaccurate LQ model had been used in comparing between hypofractionated and conventional fractioned dose. It has been verified that the calculated values are similar in the treatment of same efficacy, no matter what α/ß is, and provided a more rational explanation for significant differences among various hypofractionations. The equivalent uniform dose based on the subsection function could represent arbitrary inhomogeneous dose distributions including high-dose fractions, providing a foundation for the implementation of detailed evaluation of different cell dose effects.

2.
J Appl Clin Med Phys ; 8(1): 10-20, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-17592447

RESUMO

The technique of megavoltage cone-beam computed tomography (MV CBCT) is available for image-guided radiation therapy to improve the accuracy of patient setup and tumor localization. However, development of strategies to efficiently and effectively implement this technique or to replace the current orthogonal portal images technique remains challenging in the clinical environment. It is useful to compare the difference in absorbed dose between the MV CBCT technique and the orthogonal portal images technique, the current standard practice for treatment verification. Our study analyzed the doses generated from these two imaging techniques for six treatment sites (pelvis, abdomen, lung, head and neck, breast, prostate). The analysis was made by simulating the MV CBCT technique with an arc beam and a beam-on time of 9 monitor units (MUs), and the orthogonal pair technique with a double-exposure anterior-posterior and lateral pair and a beam-on time of 4 MUs. The results are presented as dose per MU (cGy/MU) and absolute dose (cGy). The isocenter doses, integral doses, maximum doses, and mean doses to tumor and critical organs, and the two-dimensional isodose distributions and dose-volume histograms of each critical organ were investigated. The absolute dose difference between MV CBCT and orthogonal pair at the isocenter was 4.02 +/- 0.59 cGy. Major differences were seen between the two techniques in critical organs whose locations are away from the tumor. These organs, such as the contralateral breast (difference: 0.17 +/- 0.10 cGy/MU) and lung (difference: 0.15 +/- 0.20 cGy/MU), receive a higher dose from MV CBCT images than from orthogonal portal images. Additionally, higher doses and larger dose areas involving more normal tissues were observed for MV CBCT images than for orthogonal portal images in our analysis methodology, which used 200 beam projections delivered from various angles for the MV CBCT simulation and from just two perpendicular angles for the orthogonal pair simulation. In our selected clinical cases, the high-dose area from the orthogonal pair technique was always located inside the tumor; with MV CBCT, the high-dose area will most likely be outside the tumor. Therefore, the potentially higher doses to critical organs from MV CBCT images should be properly analyzed to ensure that they do not exceed the tolerance dose when therapy is delivered using that technique. On the other hand, to obtain good image quality, the higher MUs with MV CBCT images may be necessary. The absorbed dose for the tumor and for other critical organs should be calculated accordingly in the treatment plans. Images by MV CBCT are a great tool for three-dimensional verification of patient treatment position. The trade-off is that the MV CBCT technique for patient treatment verification might have a higher chance of increasing the dose to normal tissue during image acquisition.


Assuntos
Sistema Porta/diagnóstico por imagem , Radioterapia/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Processamento de Imagem Assistida por Computador , Radiografia/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa