Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 18(1): 297-301, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29272134

RESUMO

Li metal anodes, which have attracted much attention for their high specific capacity and low redox potential, face a great challenge in realizing their practical application. The fatal issue of dendrite formation gives rise to internal short circuit and safety hazards and needs to be addressed. Here we propose a rational strategy of trapping Li within microcages to confine the deposition morphology and suppress dendrite growth. Microcages with a carbon nanotube core and porous silica sheath were prepared and proved to be effective for controlling the electrodeposition behavior. In addition, the insulative coating layer prevents concentrated electron flow and decreases the possibility of "hot spots" formation. Because of the Li trapper and uniform electron distribution, the electrode with delicate structure exhibits a dendrite-free morphology after plating 2 mA h cm-2 of Li. As the dendrite growth is suppressed, the as-obtained electrode maintains a high plating/stripping efficiency of 99% over 200 cycles. This work delivers new insights into the design of rational Li metal anodes and hastens the practical application of Li metal batteries.

2.
J Am Chem Soc ; 140(1): 82-85, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29232123

RESUMO

The key bottleneck troubling the application of solid electrolyte is the contradictory requirements from Li-metal and cathode, which need high modulus to block Li-dendrite penetration and flexibility to enable low interface resistance, respectively. This study describes a thin asymmetrical design of solid electrolyte to address these shortcomings. In this architecture, a rigid ceramic-layer modified with an ultrathin polymer is toward Li-metal to accomplish dendrite-suppression of Li-anode, and a soft polymer-layer spreads over the exterior and interior of cathode to endow connected interface simultaneously. This ingenious arrangement endows solid Li-metal batteries with extremely high Coulombic efficiency and cyclability. This work will open up one avenue for realizing safe and long-life energy storage systems.

3.
J Am Chem Soc ; 137(6): 2215-8, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25650588

RESUMO

In contrast to the extensive studies of the electrochemical behavior of conventional cyclic S8 molecules in Li-S batteries, there has been hardly any investigation of the electrochemistry of S chains. Here we use S chains encapsulated in single- and double-walled carbon nanotubes as a model system and report the electrochemical behavior of 1D S chains in Li-S batteries. An electrochemical test shows that S chains have high electrochemical activity during lithiation and extinctive electrochemistry compared with conventional S8. The confined steric effect provides Li(+) solid-phase diffusion access to insert/egress reactions with S chains. During lithiation, the long S chains spontaneously become short chains, which show higher discharge plateaus and better kinetics. The unique electrochemistry of S chains supplements the existing knowledge of the S cathode mechanism and provides avenues for rational design of S cathode materials in Li-S batteries.

5.
Adv Mater ; 29(29)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585339

RESUMO

The Li metal anode has long been considered as one of the most ideal anodes due to its high energy density. However, safety concerns, low efficiency, and huge volume change are severe hurdles to the practical application of Li metal anodes, especially in the case of high areal capacity. Here it is shown that that graphitized carbon fibers (GCF) electrode can serve as a multifunctional 3D current collector to enhance the Li storage capacity. The GCF electrode can store a huge amount of Li via intercalation and electrodeposition reactions. The as-obtained anode can deliver an areal capacity as high as 8 mA h cm-2 and exhibits no obvious dendritic formation. In addition, the enlarged surface area and porous framework of the GCF electrode result in lower local current density and mitigate high volume change during cycling. Thus, the Li composite anode displays low voltage hysteresis, high plating/stripping efficiency, and long lifespan. The multifunctional 3D current collector promisingly provides a new strategy for promoting the cycling lifespan of high areal capacity Li anodes.

6.
Adv Mater ; 28(9): 1853-8, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26698171

RESUMO

A Li3PO4 solid electrolyte interphase (SEI) layer is demonstrated to be stable in the organic electrolyte, even during the Li deposition/dissolution process. Thus, the Li-conducting Li3PO4 SEI layer with a high Young's modulus can effectively reduce side reactions between Li metal and the electrolyte and can restrain Li dendrite growth in lithium-metal batteries during cycling.

7.
Adv Mater ; 28(43): 9539-9544, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27620697

RESUMO

Hybrid sp2 carbon with a graphene backbone and graphitic carbon nanocages (G-GCNs) is demonstrated as an ideal host for sulfur in Li-S batteries, because it serves as highly efficient electrochemical nanoreactors as well as polysulfides reservoirs. The as-obtained S/(G-GCNs) with high S content exhibits superior high-rate capability (765 mA h g-1 at 5 C) and long-cycle life over 1000 cycles.

8.
Adv Mater ; 28(33): 7243-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27305570

RESUMO

A subzero-temperature cathode material is obtained by nucleating cubic prussian blue crystals at inhomogeneities in carbon nanotubes. Due to fast ionic/electronic transport kinetics even at -25 °C, the cathode shows an outstanding low-temperature performance in terms of specific energy, high-rate capability, and cycle life, providing a practical sodium-ion battery powering an electric vehicle in frigid regions.

9.
J Phys Chem Lett ; 6(2): 256-66, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26263460

RESUMO

To meet the increasing demand for electrochemical energy storage with high energy density, elemental Se is proposed as a new attractive candidate with high volumetric capacity density similar to that of S. Se is chemically and electrochemically analogous to S to a large extent but is saliently featured owing to its semiconductivity, compatibility with carbonate-based electrolytes, and activity with a Na anode. Despite only short-term studies, many advanced Se-based electrode materials have been developed for rechargeable Li batteries, Na batteries, and Li ion batteries. In this Perspective, we review the advances in Se-based energy storage materials and the challenges of Li-Se battery in both carbonate-based and ether-based electrolytes. We also discuss the rational design strategies for future Se-based energy storage systems based on the strengths and weaknesses of Se.

10.
Nat Commun ; 6: 8058, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26299379

RESUMO

Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan.

11.
ACS Appl Mater Interfaces ; 6(11): 8789-95, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24764111

RESUMO

To exploit the high energy density of lithium-sulfur batteries, porous carbon materials have been widely used as the host materials of the S cathode. Current studies about carbon hosts are more frequently focused on the design of carbon structures rather than modification of its properties. In this study, we use boron-doped porous carbon materials as the host material of the S cathode to get an insightful investigation of the effect of B dopant on the S/C cathode. Powder electronic conductivity shows that the B-doped carbon materials exhibit higher conductivity than the pure analogous porous carbon. Moreover, by X-ray photoelectron spectroscopy, we prove that doping with B leads to a positively polarized surface of carbon substrates and allows chemisorption of S and its polysulfides. Thus, the B-doped carbons can ensure a more stable S/C cathode with satisfactory conductivity, which is demonstrated by the electrochemical performance evaluation. The S/B-doped carbon cathode was found to deliver much higher initial capacity (1300 mA h g(-1) at 0.25 C), improved cyclic stability, and rate capability when compared with the cathode based on pure porous carbon. Electrochemical impedance spectra also indicate the low resistance of the S/B-doped C cathode and the chemisorption of polysulfide anions because of the presence of B. These features of B doping can play the positive role in the electrochemical performance of S cathodes and help to build better Li-S batteries.

12.
Colloids Surf B Biointerfaces ; 83(1): 78-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21111581

RESUMO

A facile hydrothermal method has been developed and shown to be effective for the preparation of TiO(2)-graphene nanocomposite. The as-prepared nanocomposite was characterized using FT-IR spectroscopy, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The TiO(2)-graphene modified glassy carbon electrode (GCE) exhibited remarkable electron transfer kinetics and electrocatalytic activity toward the oxidation of dopamine (DA). Furthermore, the oxidation of common interfering agent such as ascorbic acid (AA) was significantly suppressed at this modified electrode, which resulted in good selectivity and sensitivity for electrochemical sensing of DA. These results demonstrate that the TiO(2)-graphene hybrid material has promising potential applications in electrochemical sensors and biosensors design.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Nanocompostos/química , Temperatura , Titânio/química , Água/química , Ácido Ascórbico/análise , Carbono/química , Catálise , Dopamina/análise , Eletrodos , Vidro/química , Nanocompostos/ultraestrutura , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa