Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38526751

RESUMO

Vaccines against SARS-CoV-2 have been recommended across the world, yet no study has investigated whether COVID-19 vaccination influences short-term warfarin anti-coagulation levels. Patients on stable warfarin treatment who received anti-SARS-CoV-2 vaccination were prospectively enrolled and followed up for three months. INR values less than 10 days before vaccination (baseline), 3-5 days (short-term) and 6-14 days (medium-term) after vaccination were recorded as INR0, INR1, and INR2, respectively. The variations of INR values within individuals were compared, and the linear mixed effect model was used to evaluate the variations of INR values at different time points. Logistic regression analysis was performed to determine covariates related to INR variations after COVID-19 vaccination. Vaccination safety was also monitored. There was a significant difference in INR values between INR0 and INR1 (2.15 vs. 2.26, p = 0.003), yet no marked difference was found between INR0 and INR2. The linear mixed effect model also demonstrated that INR variation was significant in short-term but not in medium-term or long-term period after vaccination. Logistic regression analysis showed that no investigated covariates, including age, vaccine dose, genetic polymorphisms of VKORC1 and CYP2C9 etc., were associated with short-term INR variations. Two patients (2.11%) reported gingival hemorrhage in the short-term due to increased INR values. The overall safety of COVID-19 vaccines for patients on warfarin was satisfying. COVID-19 vaccines may significantly influence warfarin anticoagulation levels 3-5 days after vaccination. We recommend patients on warfarin to perform at least one INR monitoring within the first week after COVID-19 vaccination.

2.
FASEB J ; 36(6): e22353, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35593587

RESUMO

Endothelial cell (EC) aging plays a vital role in the pathogenesis of cardiovascular disease (CVD). MicroRNAs have emerged as crucial regulators of target gene expression by inhibiting mRNA translation and/or promoting mRNA degradation. We identify an aging-related and oxidative stress-responsive microRNA, miR-181b, that inhibits endothelial cell apoptosis and senescence. In gain- or loss-of-function studies, miR-181b regulated the expression of key apoptosis markers (Bcl2, Bax, cleaved-Caspase3) and senescence markers (p16, p21, γH2AX) and the ratio of apoptotic cells (TUNEL-positive) and senescent cells (SA-ßgal-positive) in H2 O2 -induced ECs. Mechanistically, miR-181b targets MAP3K3 and modulates a MAP3K3/MKK/MAPK signaling pathway. MAP3K3 knockdown recapitulated the phenotype of miR-181b overexpression and miR-181b was dependent on MAP3K3 for regulating EC apoptosis and senescence. In vivo, miR-181b expression showed a negative correlation with increasing age in the mouse aorta. Endothelial-specific deficiency of miR-181a2b2 increased the target MAP3K3, markers of vascular senescence (p16, p21), and DNA double-strand breaks (γH2AX) in the aorta of aged mice. Collectively, this study unveils an important role of miR-181b in regulating vascular endothelial aging via an MAP3K3-MAPK signaling pathway, providing new potential therapeutic targets for antiaging therapy in CVD.


Assuntos
Doenças Cardiovasculares , Sistema de Sinalização das MAP Quinases , MicroRNAs , Animais , Senescência Celular/genética , Endotélio Vascular/metabolismo , Camundongos , MicroRNAs/metabolismo
3.
J Immunol ; 206(6): 1395-1404, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33547170

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16-25.91 µM for human ASAH2 and 18.6-30.2 µM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, and inhibition of ferroptosis decreased NC06-induced MDSC death. NC06 increases glutathione synthesis and decreases lipid reactive oxygen species to suppress ferroptosis in MDSCs. Gene expression profiling identified the p53 pathway as the Asah2 target in MDSCs. Inhibition of Asah2 increased p53 protein stability to upregulate Hmox1 expression to suppress lipid reactive oxygen species production to suppress ferroptosis in MDSCs. NC06 therapy increases MDSC death and reduces MDSC accumulation in tumor-bearing mice, resulting in increased activation of tumor-infiltrating CTLs and suppression of tumor growth in vivo. Our data indicate that ASAH2 protects MDSCs from ferroptosis through destabilizing p53 protein to suppress the p53 pathway in MDSCs in the tumor microenvironment. Targeting ASAH2 with NC06 to induce MDSC ferroptosis is potentially an effective therapy to suppress MDSC accumulation in cancer immunotherapy.


Assuntos
Neoplasias do Colo/imunologia , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Ceramidase Neutra/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral/transplante , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Ferroptose/efeitos dos fármacos , Ferroptose/imunologia , Humanos , Concentração Inibidora 50 , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Ceramidase Neutra/antagonistas & inibidores , Ceramidase Neutra/genética , Estabilidade Proteica/efeitos dos fármacos , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
4.
Arterioscler Thromb Vasc Biol ; 41(9): 2399-2416, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34289702

RESUMO

Objective: Vascular smooth muscle cell (VSMC) plasticity plays a critical role in the development of atherosclerosis. Long noncoding RNAs (lncRNAs) are emerging as important regulators in the vessel wall and impact cellular function through diverse interactors. However, the role of lncRNAs in regulating VSMCs plasticity and atherosclerosis remains unclear. Approach and Results: We identified a VSMC-enriched lncRNA cardiac mesoderm enhancer-associated noncoding RNA (CARMN) that is dynamically regulated with progression of atherosclerosis. In both mouse and human atherosclerotic plaques, CARMN colocalized with VSMCs and was expressed in the nucleus. Knockdown of CARMN using antisense oligonucleotides in Ldlr−/− mice significantly reduced atherosclerotic lesion formation by 38% and suppressed VSMCs proliferation by 45% without affecting apoptosis. In vitro CARMN gain- and loss-of-function studies verified effects on VSMC proliferation, migration, and differentiation. TGF-ß1 (transforming growth factor-beta) induced CARMN expression in a Smad2/3-dependent manner. CARMN regulated VSMC plasticity independent of the miR143/145 cluster, which is located in close proximity to the CARMN locus. Mechanistically, lncRNA pulldown in combination with mass spectrometry analysis showed that the nuclear-localized CARMN interacted with SRF (serum response factor) through a specific 600­1197 nucleotide domain. CARMN enhanced SRF occupancy on the promoter regions of its downstream VSMC targets. Finally, knockdown of SRF abolished the regulatory role of CARMN in VSMC plasticity. Conclusions: The lncRNA CARMN is a critical regulator of VSMC plasticity and atherosclerosis. These findings highlight the role of a lncRNA in SRF-dependent signaling and provide implications for a range of chronic vascular occlusive disease states.


Assuntos
Aterosclerose/metabolismo , Plasticidade Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Placa Aterosclerótica , RNA Longo não Codificante/genética , Receptores de LDL/deficiência , Receptores de LDL/genética , Fator de Resposta Sérica/genética , Transdução de Sinais
5.
FASEB J ; 34(7): 9755-9770, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510702

RESUMO

Regulatory T cells (Tregs) play essential roles in obesity and diabetes. Here, we report a role of Tregs in enhancing ß3-adrenergic receptor agonist CL316243 (CL)-stimulated thermogenic program in subcutaneous adipose tissue (SAT), but not in visceral fat. CL treatment for 7 days increased SAT adipocyte beiging and thermogenic gene expression in male or female mice. Adoptive transfer of Tregs enhanced this CL activity. Such Treg activity lost in male epididymal white adipose tissue (eWAT) and female gonadal gWAT. Adipocyte culture yielded the same conclusion. Tregs enhanced the expression of CL-induced thermogenic genes in SAT from male and female mice. This activity of Tregs reduced or disappeared in adipocytes from eWAT or gWAT. Both CL and Tregs induced much higher UCP-1 (uncoupling protein-1) expression in SAT from females than that from males. A mechanistic study demonstrated a role of Tregs in suppressing the expression of M1 macrophage markers (Tnfa, Il6, iNos, Ip10) and promoting the expression of M2 macrophage markers (Mrc1, Arg1, Il10) in bone-marrow-derived macrophages or in SAT from male or female mice. In female mice with pre-established obesity, Treg adoptive transfer reduced the gWAT weight in 2 weeks. Together with CL treatment, Treg adoptive transfer reduced the SAT weight and further improved CL-induced glucose metabolism and insulin sensitivity in female obese mice, but did not affect CL-induced body weight loss in male or female obese mice. This study revealed a predominant role of Tregs in female mice in promoting adipocyte beiging and thermogenesis in SAT, in part by slanting M2 macrophage polarization.


Assuntos
Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Obesidade/etiologia , Gordura Subcutânea/patologia , Linfócitos T Reguladores/imunologia , Termogênese , Tecido Adiposo Marrom/imunologia , Tecido Adiposo Branco/imunologia , Animais , Metabolismo Energético , Feminino , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/patologia , Gordura Subcutânea/imunologia , Linfócitos T Reguladores/patologia
6.
Nanotechnology ; 32(35)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34034237

RESUMO

Herein, we demonstrate a distinctive energy harvesting method that electricity can be generated from the ionic solution flowing through the interstices between packed three-dimensional graphene powders. A constructed electrokinetic nanogenerator with an effective flow area of ∼0.34 cm2can generate a large current of 91.33 nA under 10-6M NaCl solution with a flow rate of 0.4 ml min-1, corresponding to a maximum power density of 0.45µW m-2. Besides, it shows a good linear relationship between the streaming current and the flow rate, suggesting that it could be used as a self-powered micro-flowmeter. These results provide a convenient way for clean energy harvesting and show a bright future for self-powered systems.

7.
Eur Heart J ; 41(26): 2456-2468, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-31821481

RESUMO

AIMS: Obesity is a risk factor of abdominal aortic aneurysm (AAA). Inflammatory cytokine interleukin-18 (IL18) has two receptors: IL18 receptor (IL18r) and Na-Cl co-transporter (NCC). In human and mouse AAA lesions, IL18 colocalizes to its receptors at regions rich in adipocytes, suggesting a role of adipocytes in promoting IL18 actions in AAA development. METHODS AND RESULTS: We localized both IL18r and NCC in human and mouse AAA lesions. Murine AAA development required both receptors. In mouse AAA lesions, IL18 binding to these receptors increased at regions enriched in adipocytes or adjacent to perivascular adipose tissue. 3T3-L1 adipocytes enhanced IL18 binding to macrophages, aortic smooth muscle cells (SMCs), and endothelial cells by inducing the expression of both IL18 receptors on these cells. Adipocytes also enhanced IL18r and IL18 expression from T cells and macrophages, AAA-pertinent protease expression from macrophages, and SMC apoptosis. Perivascular implantation of adipose tissue from either diet-induced obese mice or lean mice but not that from leptin-deficient ob/ob mice exacerbated AAA development in recipient mice. Further experiments established an essential role of adipocyte leptin and fatty acid-binding protein 4 (FABP4) in promoting IL18 binding to macrophages and possibly other inflammatory and vascular cells by inducing their expression of IL18, IL18r, and NCC. CONCLUSION: Interleukin-18 uses both IL18r and NCC to promote AAA formation. Lesion adipocyte and perivascular adipose tissue contribute to AAA pathogenesis by releasing leptin and FABP4 that induce IL18, IL18r, and NCC expression and promote IL18 actions.


Assuntos
Adipócitos , Aneurisma da Aorta Abdominal , Interleucina-18 , Animais , Aneurisma da Aorta Abdominal/etiologia , Modelos Animais de Doenças , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-18 , Transdução de Sinais
8.
J Cell Mol Med ; 24(10): 5911-5925, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32301289

RESUMO

Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in atherosclerosis. DMY treatment significantly inhibits atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4-positive T cells in the vessel wall and hepatic inflammation, whereas increases nitric oxide (NO) production and improves lipid metabolism in apolipoprotein E-deficient (Apoe-/- ) mice. Yet, those protective effects are abrogated by using NOS inhibitor L-NAME in Apoe-/- mice received DMY. Mechanistically, DMY decreases microRNA-21 (miR-21) and increases its target gene dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression, an effect that reduces asymmetric aimethlarginine (ADMA) levels, and increases endothelial NO synthase (eNOS) phosphorylation and NO production in cultured HUVECs, vascular endothelium of atherosclerotic lesions and liver. In contrast, systemic delivery of miR-21 in Apoe-/- mice or miR-21 overexpression in cultured HUVECs abrogates those DMY-mediated protective effects. These data demonstrate that endothelial miR-21-inhibited DDAH1-ADMA-eNOS-NO pathway promotes the pathogenesis of atherosclerosis which can be rescued by DMY. Thus, DMY may represent a potential therapeutic adjuvant in atherosclerosis management.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/metabolismo , Óxido Nítrico/biossíntese , Amidoidrolases/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Aterosclerose/sangue , Ativação Enzimática/efeitos dos fármacos , Humanos , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Cancer Immunol Immunother ; 69(11): 2233-2245, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32488308

RESUMO

IL6 is an inflammatory cytokine with pleiotropic functions in both immune and nonimmune cells, and its expression level is inversely correlated with disease prognosis in patients with cancer. However, blocking IL6 alone has only yielded minimal efficacy in human cancer patients. We aimed at defining IL6 expression profiles under inflammatory conditions and cancer, and elucidating the mechanism underlying IL6 intrinsic signaling in colon carcinoma. We report here that colonic inflammation induces IL6 expression primarily in the CD11b+Ly6G+Ly6Clo polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in colon. Although both tumor cells, T cells and myeloid cells all express IL6, PMN-MDSCs are the primary cell type that express IL6 in colon carcinoma, suggesting that IL6 up-regulation is a response to inflammation in colon epithelium and tumor microenvironment. Furthermore, we determined that IL6 activates STAT3 to up-regulate DNMT1 and DNMT3b expression in colon tumor cells, thereby revealing an epigenetic mechanism that mediates the IL6-STAT3 signaling pathway in colon carcinoma. Surprisingly, knocking out IL6 in colon tumor cells did not significantly alter tumor growth in WT mice. Conversely, IL6-sufficient colon and pancreatic tumor grow at similar rate in WT and IL6-deficient mice. However, overexpression of IL6 in colon tumor cells significantly increases tumor growth in vivo. Our findings determine that a high tumor local IL6 threshold is essential for IL6 function in colon tumor promotion and targeting the IL6-expressing PMN-MDSCs is potentially an effective approach to suppress colon tumor growth in vivo.


Assuntos
Adenocarcinoma/imunologia , Neoplasias Colorretais/imunologia , Interleucina-6/imunologia , Células Supressoras Mieloides/imunologia , Microambiente Tumoral/imunologia , Adenocarcinoma/patologia , Animais , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/metabolismo , Transdução de Sinais/imunologia , Transcriptoma
10.
BMC Cancer ; 18(1): 149, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409480

RESUMO

BACKGROUND: Pancreas ductal adenocarcinoma (PDAC) has the most dismal prognosis among all human cancers since it is highly resistant to chemotherapy, radiotherapy and immunotherapy. The anticipated consequence of all therapies is induction of tumor apoptosis. The highly resistance nature of PDACs to all therapies suggests that the intrinsic tumor cell factors, likely the deregulated apoptosis pathway, are key mechanisms underlying PDAC non-response to these therapies, rather than the therapeutic agents themselves. The aim of this study is to test the hypothesis that epigenetic dysregulation of apoptosis mediators underlies PDAC resistance to gemcitabine, the standard chemotherapy for human PDAC. METHODS: PDAC cells were analyzed for apoptosis sensitivity in the presence of a selective epigenetic inhibitor. The epigenetic regulation of apoptosis regulators was determined by Western Blotting and quantitative PCR. The specific epigenetic modification of apoptosis regulator promoter chromatin was determined by chromatin immunoprecipitation in PDAC cells. RESULTS: Inhibition of histone methyltransferase (HMTase) by a selective HMTase inhibitor, verticillin A, significantly increased human PDAC cell sensitivity to gemcitabine-induced growth suppression. Verticillin A treatment decreased FLIP, Mcl-1, Bcl-x and increased Bak, Bax and Bim protein level in the tumor cells, resulting in activation of caspases, elevated cytochrome C release and increased apoptosis as determined by upregulated PARP cleavage in tumor cells. Analysis of human PDAC specimens indicated that the expression levels of anti-apoptotic mediators Bcl-x, Mcl-1, and FLIP were significantly higher, whereas the expression levels of pro-apoptotic mediators Bim, Bak and Bax were dramatically lower in human PDAC tissues as compared to normal pancreas. Verticillin A downregulated H3K4me3 levels at the BCL2L1, CFLAR and MCL-1 promoter to decrease Bcl-x, FLIP and Mcl-1 expression level, and inhibited H3K9me3 levels at the BAK1, BAX and BCL2L11 promoter to upregulate Bak, Bax and Bim expression level. CONCLUSION: We determined that PDAC cells use H3K4me3 to activate Bcl-x, FLIP and Mcl-1, and H3K9me3 to silence Bak, Bax and Bim to acquire an apoptosis-resistant phenotype. Therefore, selective inhibition of H3K4me3 and H3K9me3 is potentially an effective approach to overcome PDAC cells resistance to gemcitabine.


Assuntos
Apoptose/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Histonas/metabolismo , Lisina/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Indóis/farmacologia , Metilação/efeitos dos fármacos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Gencitabina
11.
Curr Opin Cardiol ; 32(6): 776-783, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28786864

RESUMO

PURPOSE OF REVIEW: Long noncoding RNAs (lncRNAs) have emerged as powerful regulators of nearly all biological processes. Their cell-type and tissue-specific expression in health and disease provides new avenues for diagnosis and therapy. This review highlights the role of lncRNAs that are involved in cardiovascular disease (CVD) with a special focus on cell types involved in cardiac injury and remodeling, vascular injury, angiogenesis, inflammation, and lipid metabolism. RECENT FINDINGS: Almost 98% of the genome does not encode for proteins. LncRNAs are among the most abundant type of RNA in the noncoding genome. Accumulating studies have uncovered novel lncRNA-mediated regulation of CVD-associated genes, signaling pathways, and pathophysiological responses. Targeting lncRNAs in vivo using short antisense oligonucleotides or by gene editing has provided important insights into disease pathogenesis through epigenetic, transcriptional, or translational mechanisms. Although cross-species conservation still remains a major obstacle, there is increasing appreciation that altered expression of lncRNAs associates with stage-specific CVD and in human patient cohorts, providing new opportunities for diagnosis and therapy. SUMMARY: A better understanding of lncRNAs will not only fundamentally improve our understanding of key signaling pathways in CVD, but also aid in the development of effective new therapies and RNA-based biomarkers.


Assuntos
Doenças Cardiovasculares/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Células Endoteliais/metabolismo , Humanos , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Monócitos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo
12.
FASEB J ; 30(9): 3216-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297585

RESUMO

Thrombogenic and inflammatory mediators, such as thrombin, induce NF-κB-mediated endothelial cell (EC) activation and dysfunction, which contribute to pathogenesis of arterial thrombosis. The role of anti-inflammatory microRNA-181b (miR-181b) on thrombosis remains unknown. Our previous study demonstrated that miR-181b inhibits downstream NF-κB signaling in response to TNF-α. Here, we demonstrate that miR-181b uniquely inhibits upstream NF-κB signaling in response to thrombin. Overexpression of miR-181b inhibited thrombin-induced activation of NF-κB signaling, demonstrated by reduction of phospho-IKK-ß, -IκB-α, and p65 nuclear translocation in ECs. MiR-181b also reduced expression of NF-κB target genes VCAM-1, intercellular adhesion molecule-1, E-selectin, and tissue factor. Mechanistically, miR-181b targets caspase recruitment domain family member 10 (Card10), an adaptor protein that participates in activation of the IKK complex in response to signals transduced from protease-activated receptor-1. miR-181b reduced expression of Card10 mRNA and protein, but not protease-activated receptor-1. 3'-Untranslated region reporter assays, argonaute-2 microribonucleoprotein immunoprecipitation studies, and Card10 rescue studies revealed that Card10 is a bona fide direct miR-181b target. Small interfering RNA-mediated knockdown of Card10 expression phenocopied effects of miR-181b on NF-κB signaling and targets. Card10 deficiency did not affect TNF-α-induced activation of NF-κB signaling, which suggested stimulus-specific regulation of NF-κB signaling and endothelial responses by miR-181b in ECs. Finally, in response to photochemical injury-induced arterial thrombosis, systemic delivery of miR-181b reduced thrombus formation by 73% in carotid arteries and prolonged time to occlusion by 1.6-fold, effects recapitulated by Card10 small interfering RNA. These data demonstrate that miR-181b and Card10 are important regulators of thrombin-induced EC activation and arterial thrombosis. These studies highlight the relevance of microRNA-dependent targets in response to ligand-specific signaling in ECs.-Lin, J., He, S., Sun, X., Franck, G., Deng, Y., Yang, D., Haemmig, S., Wara, A. K. M., Icli, B., Li, D., Feinberg, M. W. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , MicroRNAs/metabolismo , Trombina/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Células Endoteliais , Endotélio Vascular , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , Camundongos , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Interferência de RNA , Transdução de Sinais/fisiologia , Síndrome do Desfiladeiro Torácico , Trombina/genética , Trombose/etiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
J Immunol ; 195(4): 1868-82, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26136424

RESUMO

The Fas-FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide chromatin immunoprecipitation sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. The H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and it is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2, and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 levels in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than decitabine and vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-fluorouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL(+) and that FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression.


Assuntos
Neoplasias do Colo/etiologia , Resistencia a Medicamentos Antineoplásicos/genética , Inativação Gênica , Histonas/metabolismo , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Receptor fas/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Metilação de DNA , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Fluoruracila/farmacologia , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Antígenos de Histocompatibilidade/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Indóis/farmacologia , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metilação/efeitos dos fármacos , Metiltransferases/metabolismo , Camundongos , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(6): 566-70, 2016 Jun 28.
Artigo em Zh | MEDLINE | ID: mdl-27374439

RESUMO

OBJECTIVE: To explore the effect of ROCK inhibitor Y-27632 on the matrix metalloproteinase 2 and 9 (MMP2 and MMP9) gene expression and activity in tumor necrosis factor α (TNF-α)-treated human umbilical vein endothelial cell (HUVEC).
 METHODS: HHUVEC was divided into 3 groups, a control group, a TNF-α group, and a TNF-α plus Y-27632 group. The expressions of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), MMP2 and MMP9 were examined by real-time PCR. The MMP2/9 activity was measured by gelatin zymography.
 RESULTS: Compared to the control group, the mRNA expressions of ICAM-1, VCAM-1, MMP2 and MMP9 were increased TNF-α-treated cells, which were suppressed by ROCK inhibitor (P<0.01). The MMP2/9 activity was elevated in TNF-α-treated cells, which was reversed by ROCK inhibitor (P<0.05).
 CONCLUSION: ROCK inhibitor can suppress TNF-α-induced inflammation in endothelial cells through down-regulation of MMP2/9.


Assuntos
Células Endoteliais , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular , Amidas , Células Cultivadas , Regulação para Baixo , Humanos , Molécula 1 de Adesão Intercelular , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Piridinas , Fator de Necrose Tumoral alfa , Veias Umbilicais , Quinases Associadas a rho
15.
BMC Cancer ; 15: 770, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26497740

RESUMO

BACKGROUND: Inducible nitric oxide synthase (iNOS) metabolizes L-arginine to produce nitric oxide (NO) which was originally identified in myeloid cells as a host defense mechanism against pathogens. Recent studies, however, have revealed that iNOS is often induced in tumor cells and myeloid cells in the tumor microenvironment. Compelling experimental data have shown that iNOS promotes tumor development in certain cellular context and suppresses tumor development in other cellular conditions. The molecular mechanisms underlying these contrasting functions of iNOS is unknown. Because iNOS is often induced by inflammatory signals, it is therefore likely that these contrasting functions of iNOS could be controlled by the inflammatory signaling pathways, which remains to be determined. METHODS: iNOS is expressed in colon carcinoma and myeloid cells in the tumor microenvironment. Colon carcinoma and myeloid cell lines were used to elucidate the molecular mechanisms underlying iNOS expression. Chromatin immunoprecipitation and electrophoretic mobility shift assay were used to determine the IFNγ-activated pSTAT1 and NF-κB association with the chromatin DNA of the nos2 promoter. RESULTS: We show here that iNOS is dramatically up-regulated in inflammed human colon tissues and in human colon carcinoma as compared to normal colon tissue. iNOS is expressed in either the colon carcinoma cells or immune cells within the tumor microenvironment. On the molecular level, the proinflammatory IFNγ and NF-κB signals induce iNOS expression in human colon cancer cells. We further demonstrate that NF-κB directly binds to the NOS2 promoter to regulate iNOS expression. Although neither the IFNγ signaling pathway nor the NF-κB signaling pathway alone is sufficient to induce iNOS expression in myeloid cells, IFNγ and NF-κB synergistically induce iNOS expression in myeloid cells. Furthermore, we determine that IFNγ up-regulates IRF8 expression to augment NF-κB induction of iNOS expression. More interestingly, we observed that the p65/p65 and p50/p50 homodimers, not the canonical p65/p50 heterodimer, directly binds to the nos2 promoter to regulate iNOS expression in myeloid cells. CONCLUSIONS: IFNγ-induced IRF8 acts in concert with NF-κB to regulate iNOS expression in both colon carcinoma and myeloid cells. In myeloid cells, the NF-κB complexes that bind to the nos2 promoter are p65/p65 and p50/p50 homodimers.


Assuntos
Neoplasias do Colo/metabolismo , Fatores Reguladores de Interferon/fisiologia , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição RelA/fisiologia , Animais , Linhagem Celular Tumoral/metabolismo , Colo/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferon gama/fisiologia , Camundongos , Células Mieloides/metabolismo , Regiões Promotoras Genéticas , Microambiente Tumoral/fisiologia
16.
J Biol Chem ; 288(26): 19103-15, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23677993

RESUMO

Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.


Assuntos
Apoptose , Farmacorresistência Bacteriana/genética , Regulação Neoplásica da Expressão Gênica , Células Mieloides/citologia , Neoplasias/metabolismo , Proteína bcl-X/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Caspase 8/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteína X Associada a bcl-2/metabolismo , Receptor fas/metabolismo
17.
BMC Cancer ; 14: 24, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24422988

RESUMO

BACKGROUND: Ceramide is a bioeffector that mediates various cellular processes, including apoptosis. However, the mechanism underlying ceramide function in apoptosis is apparently cell type-dependent and is not well-understood. We aimed at identifying molecular targets of ceramide in metastatic human colon and breast cancer cells, and determining the efficacy of ceramide analog in suppression of colon and breast cancer metastasis. METHODS: The activity of and mechanism underlying ceramide as a cytotoxic agent, and as a sensitizer for Fas-mediated apoptosis was analyzed in human cell lines established from primary or metastatic colon and breast cancers. The efficacy of ceramide analog LCL85 in suppression of metastasis was examined in preclinical mouse tumor models. RESULTS: Exposure of human colon carcinoma cells to ceramide analog LCL85 results in apoptosis in a dose-dependent manner. Interestingly, a sublethal dose of LCL85 increased C16 ceramide content and overcame tumor cell resistance to Fas-mediated apoptosis. Subsequently, treatment of tumor cells with exogenous C16 ceramide resulted in increased tumor cell sensitivity to Fas-mediated apoptosis. LCL85 resembles Smac mimetic BV6 in sensitization of colon carcinoma cells to Fas-mediated apoptosis by inducing proteasomal degradation of cIAP1 and xIAP proteins. LCL85 also decreased xIAP1 and cIAP1 protein levels and sensitized metastatic human breast cancer cells to Fas-mediated apoptosis. Silencing xIAP and cIAP1 with specific siRNAs significantly increased the metastatic human colon carcinoma cell sensitivity to Fas-mediated apoptosis, suggesting that IAP proteins mediate apoptosis resistance in metastatic human colon carcinoma cells and ceramide induces IAP protein degradation to sensitize the tumor cells to apoptosis induction. Consistent with its apoptosis sensitization activity, subtoxic doses of LCL85 suppressed colon carcinoma cell metastatic potential in an experimental lung metastasis mouse model, as well as breast cancer growth and spontaneous lung metastasis in an orthotopic breast cancer mouse model. CONCLUSION: We have identified xIAP and cIAP1 as molecular targets of ceramide and determined that ceramide analog LCL85 is an effective sensitizer in overcoming resistance of human cell lines established from metastatic colon and breast cancers to apoptosis induction to suppress metastasis in vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ceramidas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteínas Inibidoras de Apoptose/metabolismo , Propanolaminas/farmacologia , Compostos de Piridínio/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/secundário , Progressão da Doença , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ubiquitina-Proteína Ligases , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/metabolismo
18.
J Immunol ; 188(9): 4441-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22461695

RESUMO

The death receptor Fas and its physiological ligand (FasL) regulate apoptosis of cancerous cells, thereby functioning as a critical component of the host cancer immunosurveillance system. To evade Fas-mediated apoptosis, cancer cells often downregulate Fas to acquire an apoptosis-resistant phenotype, which is a hallmark of metastatic human colorectal cancer. Therefore, targeting Fas resistance is of critical importance in Fas-based cancer therapy and immunotherapy. In this study, we demonstrated that epigenetic inhibitors decitabine and vorinostat cooperate to upregulate Fas expression in metastatic human colon carcinoma cells. Decitabine also upregulates BNIP3 and Bik expression, whereas vorinostat decreased Bcl-x(L) expression. Altered expression of Fas, BNIP3, Bik, and Bcl-x(L) resulted in effective sensitization of the metastatic human colon carcinoma cells to FasL-induced apoptosis. Using an experimental metastasis mouse model, we further demonstrated that decitabine and vorinostat cooperate to suppress colon carcinoma metastasis. Analysis of tumor-bearing lung tissues revealed that a large portion of tumor-infiltrating CD8(+) T cells are FasL(+), and decitabine and vorinostat-mediated tumor-suppression efficacy was significantly decreased in Fas(gld) mice compared with wild-type mice, suggesting a critical role for FasL in decitabine and vorinostat-mediated tumor suppression in vivo. Consistent with their function in apoptosis sensitization, decitabine and vorinostat significantly increased the efficacy of CTL adoptive transfer immunotherapy in an experimental metastasis mouse model. Thus, our data suggest that combined modalities of chemotherapy to sensitize the tumor cell to Fas-mediated apoptosis and CTL immunotherapy is an effective approach for the suppression of colon cancer metastasis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Azacitidina/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Proteína Ligante Fas/imunologia , Ácidos Hidroxâmicos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Transferência Adotiva/métodos , Animais , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Azacitidina/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Decitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Proteínas de Membrana/imunologia , Camundongos , Proteínas Mitocondriais/imunologia , Metástase Neoplásica/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia , Vorinostat , Proteína bcl-X/imunologia
19.
RSC Adv ; 14(4): 2243-2263, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38213963

RESUMO

Hydrogels are three-dimensional (3D) crosslinked network hydrophilic polymers that have structures similar to that of biological protein tissue and can quickly absorb a large amount of water. Opal photonic crystals (OPCs) are a kind of photonic band gap material formed by the periodic arrangement of 3D media, and inverse opal photonic crystals (IOPCs) are their inverse structure. Inverse opal photonic crystal hydrogels (IOPCHs) can produce corresponding visual color responses to a change in acid or alkali in an external humid environment, which has wide applications in chemical sensing, anti-counterfeiting, medical detection, intelligent display, and other fields, and the field has developed rapidly in recent years. In this paper, the research progress on fast acid-base response IOPCHs (pH-IOPCHs) is comprehensively described from the perspective of material synthesis. The technical bottleneck of enhancing the performance of acid-base-responsive IOPCHs and the current practical application limitations are summarized, and the development prospects of acid-base-responsive IOPCHs are described. These comprehensive analyses are expected to provide new ideas for solving problems in the preparation and application of pH-IOPCHs.

20.
Immunol Lett ; 268: 106887, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925442

RESUMO

Vaccines and antibodies that specifically target or neutralize components of the SARS-CoV-2 virus are effective in prevention and treatment of human patients with SARS-CoV-2 infection. However, vaccines and SARS-CoV-2 neutralization antibodies target a subset of epitopes of viral proteins, and the fast evolution of the SARS-CoV-2 virus and the continuing emergence of SARS-CoV-2 variants confer SARS-CoV-2 immune escape from these therapies. ACE2 is the human cell receptor that serves as the entry point for SARS-CoV-2 into human cells and thus is the gatekeeper for SARS-CoV-2 infection of humans. We report here the development of 4G8C11, an anti-human ACE2 receptor monoclonal antibody that recognizes ACE2 on human cell surfaces. We determined that 4G8C11 blocks SARS-CoV-2 and variant infection of ACE2+ human cells. Furthermore, 4G8C11 has minimal effects on ACE2 receptor activity. 4G8C11 is therefore a monoclonal antibody for ACE2 receptor detection and potentially an effective immunotherapeutic agent for SARS-CoV-2 and variants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa