Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1973): 20212650, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473372

RESUMO

The collection of caterpillar fungus accounts for 50-70% of the household income of thousands of Himalayan communities and has an estimated market value of $5-11 billion across Asia. However, Himalayan collectors are at multiple economic disadvantages compared with collectors on the Tibetan Plateau because their product is not legally recognized. Using a customized hybrid-enrichment probe set and market-grade caterpillar fungus (with samples up to 30 years old) from 94 production zones across Asia, we uncovered clear geography-based signatures of historical dispersal and significant isolation-by-distance among caterpillar fungus hosts. This high-throughput approach can readily distinguish samples from major production zones with definitive geographical resolution, especially for samples from the Himalayan region that form monophyletic clades in our analysis. Based on these results, we propose a two-step procedure to help local communities authenticate their produce and improve this multi-national trade-route without creating opportunities for illegal exports and other forms of economic exploitation. We argue that policymakers and conservation practitioners must encourage the fair trade of caterpillar fungus in addition to sustainable harvesting to support a trans-boundary conservation effort that is much needed for this natural commodity in the Himalayan region.


Assuntos
Fungos , Ásia , Geografia
2.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 163-169, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809291

RESUMO

Siglecs, membrane-bound lectins of the sialic acid-binding immunoglobulin superfamily, inhibit immune responses by recruiting tyrosine phosphatases (e.g., SHP-1 and SHP-2) through their cytoplasmic immunoreceptor tyrosine-based inhibition motif (ITIM) domain. The role of Siglecs in infection has been extensively studied, but downstream signaling through the ITIM domain remains unclear. Here, we used a GST pull-down assay to identify additional proteins associated with the ITIM domain during bacterial infection. Gdi2 bound to ITIM under normal homeostasis, but Rab1a was recruited to ITIM during bacterial infection. Western blot analysis confirmed the presence of SHP-1 and SHP-2 in eluted ITIM-associated proteins under normal homeostasis. We confirmed the association of ITIM with Gdi2 or Rab1a by transfection of corresponding expression vectors in 293T cells followed by immunoprecipitation-western blot assay. Thus, ITIM's role in the inhibition of the immune response during bacterial infection may be regulated by interaction with Gdi2 and Rab1a in addition to SHP-1 and SHP-2.


Assuntos
Infecções Bacterianas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Transdução de Sinais , Transfecção
3.
PLoS Pathog ; 13(10): e1006713, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084253

RESUMO

The activation of interferon (IFN)-regulatory factor-3 (IRF3), characterized by phosphorylation and nuclear translocation of the latent transcription factor, is central to initiating innate antiviral responses. Whereas much has been learned about the upstream pathways and signaling mechanisms leading to IRF3 activation, how activated IRF3 operates in the nucleus to control transcription of IFNs remains obscure. Here we identify EAP30 (a.k.a, SNF8/VPS22), an endosomal sorting complex required for transport (ESCRT)-II subunit, as an essential factor controlling IRF3-dependent antiviral defense. Depletion of EAP30, but not other ESCRT-II subunits, compromised IRF3-dependent induction of type I and III IFNs, IFN-stimulated genes (ISGs) and chemokines by double-stranded RNA or viruses. EAP30, however, was dispensable for the induction of inflammatory mediators of strict NF-κB target. Significantly, knockdown of EAP30 also impaired the establishment of an antiviral state against vesicular stomatitis virus and hepatitis C virus, which are of distinct viral families. Mechanistically, EAP30 was not required for IRF3 activation but rather acted at a downstream step. Specifically, a fraction of EAP30 localized within the nucleus, where it formed a complex with IRF3 and its transcriptional co-activator, CREB-binding protein (CBP), in a virus-inducible manner. These interactions promoted IRF3 binding to target gene promoters such as IFN-ß, IFN-λ1 and ISG56. Together, our data describe an unappreciated role for EAP30 in IRF3-dependent innate antiviral response in the nucleus.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Técnicas de Silenciamento de Genes , Hepacivirus/genética , Hepatite C/genética , Humanos , Fator Regulador 3 de Interferon/genética , Interferon beta/genética , Interferon beta/imunologia , Interferons , Interleucinas/genética , Interleucinas/imunologia , Proteínas de Ligação a RNA , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Células Vero
4.
New Phytol ; 224(3): 1304-1315, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494940

RESUMO

Interactions between mutualists, competitors, and antagonists have contrasting ecological effects that, sustained over generations, can influence micro- and macroevolution. Dissimilar benefits and costs for these interactions should cause contrasting co-diversification patterns between interacting clades, with prevalent co-speciation by mutualists, association loss by competitors, and host switching by antagonists. We assessed these expectations for a local assemblage of 26 fig species (Moraceae: Ficus), 26 species of mutualistic (pollinating), and 33 species of parasitic (galling) wasps (Chalcidoidea). Using newly acquired gene sequences, we inferred the phylogenies for all three clades. We then compared the three possible pairs of phylogenies to assess phylogenetic congruence and the relative frequencies of co-speciation, association duplication, switching, and loss. The paired phylogenies of pollinators with their mutualists and competitors were significantly congruent, unlike that of figs and their parasites. The distributions of macroevolutionary events largely agreed with expectations for mutualists and antagonists. By contrast, that for competitors involved relatively frequent association switching, as expected, but also unexpectedly frequent co-speciation. The latter result likely reflects the heterogeneous nature of competition among fig wasps. These results illustrate the influence of different interspecific interactions on co-diversification, while also revealing its dependence on specific characteristics of those interactions.


Assuntos
Biodiversidade , Ficus/fisiologia , Animais , Filogenia , Polinização/fisiologia , Especificidade da Espécie , Vespas
5.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28956771

RESUMO

Activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. However, attenuation or termination of signaling is also necessary for preventing immune-mediated tissue damage and spontaneous autoimmunity. Here, we identify nucleotide binding oligomerization domain (NOD)-like receptor X1 (NLRX1) as a negative regulator of the mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathway during hepatitis C virus (HCV) infection. The depletion of NLRX1 enhances the HCV-triggered activation of interferon (IFN) signaling and causes the suppression of HCV propagation in hepatocytes. NLRX1, a HCV-inducible protein, interacts with MAVS and mediates the K48-linked polyubiquitination and subsequent degradation of MAVS via the proteasomal pathway. Moreover, poly(rC) binding protein 2 (PCBP2) interacts with NLRX1 to participate in the NLRX1-induced degradation of MAVS and the inhibition of antiviral responses during HCV infection. Mutagenic analyses further revealed that the NOD of NLRX1 is essential for NLRX1 to interact with PCBP2 and subsequently induce MAVS degradation. Our study unlocks a key mechanism of the fine-tuning of innate immunity by which NLRX1 restrains the retinoic acid-inducible gene I-like receptor (RLR)-MAVS signaling cascade by recruiting PCBP2 to MAVS for inducing MAVS degradation through the proteasomal pathway. NLRX1, a negative regulator of innate immunity, is a pivotal host factor for HCV to establish persistent infection.IMPORTANCE Innate immunity needs to be tightly regulated to maximize the antiviral response and minimize immune-mediated pathology, but the underlying mechanisms are poorly understood. In this study, we report that NLRX1 is a proviral host factor for HCV infection and functions as a negative regulator of the HCV-triggered innate immune response. NLRX1 recruits PCBP2 to MAVS and induces the K48-linked polyubiquitination and degradation of MAVS, leading to the negative regulation of the IFN signaling pathway and promoting HCV infection. Overall, this study provides intriguing insights into how innate immunity is regulated during viral infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepacivirus/imunologia , Hepatite C/imunologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Linhagem Celular , Células HEK293 , Hepacivirus/fisiologia , Humanos , Imunidade Inata , Proteínas Mitocondriais/genética , Mutação , Ligação Proteica , Domínios Proteicos , Proteólise , Transdução de Sinais , Replicação Viral
6.
Pancreatology ; 18(3): 328-333, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29525378

RESUMO

OBJECTIVE: To explore the molecular mechanisms of celecoxib-induced pancreatic cancer suppression in vivo and in vitro. METHODS: The anti-pancreatic cancer activities of celecoxib (0, 20, 60 and 100 µmol/L) were investigated by cell viability and migration of Panc-1 and Bxpc-3 cells in vitro. The expression of L1CAM in pancreatic cancer and adjacent tissues was compared using immunohistochemistry. The expressions of L1CAM, STAT3, p-STAT3, NF-κB, p-NF-κB were determined by western blotting, and cell invasive ability was determined by wound healing assay in L1CAM-silenced and over-expressed Panc-1and Bxpc-3 cells. RESULTS: The expression of L1CAM in pancreatic carcinoma was stronger than that in the adjacent tissues and L1CAM could increase the growth and invasion of pancreatic cancer cells. Over-expression of L1CAM activated the STAT3/NF-κB signaling pathway in Panc-1 and Bxpc-3 pancreatic cancer cells and celecoxib inhibited their viability and the expressions of STAT3, p-STAT3, NF-κB, p-NF-κB as well as full length L1CAM in a concentration dependent manner. CONCLUSIONS: L1CAM was highly expressed in pancreatic cancer tissue and positively correlated with age, TNM staging and tumor differentiation. L1CAM activated the STAT/NF-κB signaling pathway and celecoxib could inhibit the activity of L1CAM, STAT3 and the NF-κB signaling pathway resulting in decreased growth and invasion of pancreatic cancer cells.


Assuntos
Antígeno CD56/antagonistas & inibidores , Celecoxib/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Metástase Neoplásica/prevenção & controle , Neoplasias Pancreáticas/prevenção & controle , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição RelA/antagonistas & inibidores , Antígeno CD56/genética , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Imuno-Histoquímica , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/patologia , Plasmídeos/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética , Cicatrização/efeitos dos fármacos , Cicatrização/genética
7.
J Virol ; 90(15): 6832-45, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194766

RESUMO

UNLABELLED: Interferons (IFNs) restrict various kinds of viral infection via induction of hundreds of IFN-stimulated genes (ISGs), while the functions of the majority of ISGs are broadly unclear. Here, we show that a high-IFN-inducible gene, ISG12a (also known as IFI27), exhibits a nonapoptotic antiviral effect on hepatitis C virus (HCV) infection. Viral NS5A protein is targeted specifically by ISG12a, which mediates NS5A degradation via a ubiquitination-dependent proteasomal pathway. K374R mutation in NS5A domain III abrogates ISG12a-induced ubiquitination and degradation of NS5A. S-phase kinase-associated protein 2 (SKP2) is identified as an ubiquitin E3 ligase for NS5A. ISG12a functions as a crucial adaptor that promotes SKP2 to interact with and degrade viral protein. Moreover, the antiviral effect of ISG12a is dependent on the E3 ligase activity of SKP2. These findings uncover an intriguing mechanism by which ISG12a restricts viral infection and provide clues for understanding the actions of innate immunity. IMPORTANCE: Upon virus invasion, IFNs induce numerous ISGs to control viral spread, while the functions of the majority of ISGs are broadly unclear. The present study shows a novel antiviral mechanism of ISGs and elucidated that ISG12a recruits an E3 ligase, SKP2, for ubiquitination and degradation of viral protein and restricts viral infection. These findings provide important insights into exploring the working principles of innate immunity.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/prevenção & controle , Proteínas de Membrana/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células Cultivadas , Hepatite C/metabolismo , Hepatite C/virologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Proteólise , Ubiquitinação
8.
Tumour Biol ; 39(6): 1010428317710410, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28639887

RESUMO

Hepatocellular carcinoma is a leading cause of cancer-related mortality worldwide. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a potential target for cancer therapy. However, many cancer cells are resistant to TRAIL-induced apoptosis and its mechanism is not well understood. In this study, to identify potential therapeutic targets for TRAIL-resistant cancer cells, we compared the expression levels of interferon-stimulated gene 15 in TRAIL-sensitive and TRAIL-resistant hepatocellular carcinoma cell lines. Western blot analysis showed that interferon-stimulated gene 15 expression levels were significantly higher in resistant HLCZ01and Huh7 cells than in sensitive LH86 and SMMC-7721 cells. Interferon-stimulated gene 15 knockdown in resistance cells led to TRAIL sensitivity. Conversely, interferon-stimulated gene 15 overexpression in sensitive cells resulted in TRAIL resistance. Our bioinformatics search detected a putative target sequence for microRNA miR-138 in the 3' untranslated region of the interferon-stimulated gene 15. Real-time quantitative polymerase chain reaction analysis demonstrated that miR-138 was significantly downregulated in TRAIL-resistant cells compared to TRAIL-sensitive cells. Forced expression of miR-138 in resistant cells decreased both messenger RNA and protein levels of interferon-stimulated gene 15, and when exposed to TRAIL, activated poly(adenosine diphosphate-ribose) polymerase, indicating sensitization to TRAIL. The results suggested that miR-138 regulates the interferon-stimulated gene 15 expression by directly targeting the 3' untranslated region of interferon-stimulated gene 15 and modulates the sensitivity to TRAIL-induced apoptosis. MiR-138 may be a target for therapeutic intervention in TRAIL-based drug treatments of resistant hepatocellular carcinoma or could be a biomarker to select patients who may benefit from the treatment.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Regiões 3' não Traduzidas/genética , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Interferons/genética , Neoplasias Hepáticas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(13): E1264-73, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24616513

RESUMO

The absence of a robust cell culture system for hepatitis B virus (HBV) and hepatitis C virus (HCV) infection has limited the analysis of the virus lifecycle and drug discovery. We have established a hepatoma cell line, HLCZ01, the first cell line, to the authors' knowledge, supporting the entire lifecycle of both HBV and HCV. HBV surface antigen (HBsAg)-positive particles can be observed in the supernatant and the lumen of the endoplasmic reticulum of the cells via electron microscopy. Interestingly, HBV and HCV clinical isolates propagate in HLCZ01 cells. Both viruses replicate in the cells without evidence of overt interference. HBV and HCV entry are blocked by antibodies against HBsAg and human CD81, respectively, and the replication of HBV and HCV is inhibited by antivirals. HLCZ01 cells mount an innate immune response to virus infection. The cell line provides a powerful tool for exploring the mechanisms of virus entry and replication and the interaction between host and virus, facilitating the development of novel antiviral agents and vaccines.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/fisiologia , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/virologia , Replicação Viral/fisiologia , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Coinfecção/tratamento farmacológico , Coinfecção/patologia , Coinfecção/virologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/crescimento & desenvolvimento , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/isolamento & purificação , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Replicação Viral/efeitos dos fármacos
10.
J Virol ; 90(5): 2332-44, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26656705

RESUMO

UNLABELLED: High-mobility group box 1 (HMGB1) protein is a highly conserved nuclear protein involved in multiple human diseases, including infectious diseases, immune disorders, metabolic disorders, and cancer. HMGB1 is comprised of two tandem HMG boxes (the A box and the B box) containing DNA-binding domains and an acidic C-terminal peptide. It has been reported that HMGB1 enhances viral replication by binding to viral proteins. However, its role in hepatitis C virus (HCV) replication is unknown. Here, we show that HMGB1 promoted HCV replication but had no effect on HCV translation. RNA immunoprecipitation experiments indicated that the positive strand, not the negative strand, of HCV RNA interacted with HMGB1. HCV infection triggered HMGB1 protein translocation from the nucleus to the cytoplasm, in which it interacted with the HCV genome. Moreover, the A box of HMGB1 is the pivotal domain to interact with stem-loop 4 (SL4) of the HCV 5' untranslated region. Deletion of the HMGB1 A box abrogated the enhancement of HCV replication by HMGB1. Our data suggested that HMGB1 serves as a proviral factor of HCV to facilitate viral replication in hepatocytes by interaction with the HCV genome. IMPORTANCE: Hepatitis C virus (HCV) is a major global health threat, affecting more than 170 million people infection worldwide. These patients are at high risk of developing severe liver diseases such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Currently, no vaccine is available. Many host factors may be implicated in the pathogenesis of HCV-related diseases. In this study, we found a novel HCV RNA-binding protein, HMGB1, that promotes HCV RNA replication. Moreover, SL4 in the 5' untranslated region of the HCV genome is the key region for HMGB1 binding, and the A box of HMGB1 protein is the functional domain to interact with HCV RNA and enhance viral replication. HMGB1 appears to play an important role in HCV-related diseases, and further investigation is warranted to elucidate the specific actions of HMGB1 in HCV pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Proteína HMGB1/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , RNA Viral/metabolismo , Replicação Viral , Linhagem Celular , Hepatócitos/virologia , Humanos , Ligação Proteica
11.
Exp Cell Res ; 333(2): 316-326, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25724899

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4׳,6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Interferon-alfa/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Carcinoma Hepatocelular/patologia , Caspases/metabolismo , Celecoxib , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase 2/farmacologia , Sinergismo Farmacológico , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Virol ; 88(4): 1990-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307579

RESUMO

Hepatitis C virus (HCV) core protein is essential for virus assembly. HCV core protein was expressed and purified. Aptamers against core protein were raised through the selective evolution of ligands by the exponential enrichment approach. Detection of HCV infection by core aptamers and the antiviral activities of aptamers were characterized. The mechanism of their anti-HCV activity was determined. The data showed that selected aptamers against core specifically recognize the recombinant core protein but also can detect serum samples from hepatitis C patients. Aptamers have no effect on HCV RNA replication in the infectious cell culture system. However, the aptamers inhibit the production of infectious virus particles. Beta interferon (IFN-ß) and interferon-stimulated genes (ISGs) are not induced in virally infected hepatocytes by aptamers. Domains I and II of core protein are involved in the inhibition of infectious virus production by the aptamers. V31A within core is the major resistance mutation identified. Further study shows that the aptamers disrupt the localization of core with lipid droplets and NS5A and perturb the association of core protein with viral RNA. The data suggest that aptamers against HCV core protein inhibit infectious virus production by disrupting the localization of core with lipid droplets and NS5A and preventing the association of core protein with viral RNA. The aptamers for core protein may be used to understand the mechanisms of virus assembly. Core-specific aptamers may hold promise for development as early diagnostic reagents and potential therapeutic agents for chronic hepatitis C.


Assuntos
Anticorpos Monoclonais/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Hepacivirus/genética , Hepacivirus/metabolismo , Proteínas do Core Viral/metabolismo , Vírion/efeitos dos fármacos , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Western Blotting , Linhagem Celular , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Biblioteca Gênica , Hepacivirus/efeitos dos fármacos , Humanos , Imunoprecipitação , Camundongos , Plasmídeos/genética , Ligação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Técnica de Seleção de Aptâmeros , Proteínas do Core Viral/genética
13.
Mediators Inflamm ; 2015: 716315, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146465

RESUMO

It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-α synergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-ß, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Interleucinas/farmacologia , Proteínas de Neoplasias/fisiologia , 2',5'-Oligoadenilato Sintetase/fisiologia , Células Cultivadas , Hepacivirus/fisiologia , Humanos , Interferon-alfa/farmacologia , Regiões Promotoras Genéticas , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , eIF-2 Quinase/genética , eIF-2 Quinase/fisiologia
14.
Antimicrob Agents Chemother ; 57(10): 4937-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877701

RESUMO

Hepatitis C virus (HCV) envelope protein (E1E2) is essential for virus binding to host cells. Aptamers have been demonstrated to have strong promising applications in drug development. In the current study, a cDNA fragment encoding the entire E1E2 gene of HCV was cloned. E1E2 protein was expressed and purified. Aptamers for E1E2 were selected by the method of selective evolution of ligands by exponential enrichment (SELEX), and the antiviral actions of the aptamers were examined. The mechanism of their antiviral activity was investigated. The data show that selected aptamers for E1E2 specifically recognize the recombinant E1E2 protein and E1E2 protein from HCV-infected cells. CD81 protein blocks the binding of aptamer E1E2-6 to E1E2 protein. Aptamers against E1E2 inhibit HCV infection in an infectious cell culture system although they have no effect on HCV replication in a replicon cell line. Beta interferon (IFN-ß) and IFN-stimulated genes (ISGs) are not induced in virus-infected hepatocytes with aptamer treatment, suggesting that E1E2-specific aptamers do not induce innate immunity. E2 protein is essential for the inhibition of HCV infection by aptamer E1E2-6, and the aptamer binding sites are located in E2. Q412R within E1E2 is the major resistance substitution identified. The data indicate that an aptamer against E1E2 exerts its antiviral effects through inhibition of virus binding to host cells. Aptamers against E1E2 can be used with envelope protein to understand the mechanisms of HCV entry and fusion. The aptamers may hold promise for development as therapeutic drugs for hepatitis C patients.


Assuntos
Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Humanos
15.
Syst Biol ; 61(6): 1029-47, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22848088

RESUMO

It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification. [Biogeography; coevolution; cospeciation; host switching; long-branch attraction; phylogeny.].


Assuntos
Ficus/classificação , Filogenia , Vespas/classificação , Animais , Teorema de Bayes , Ficus/genética , Especiação Genética , Filogeografia , Polinização , Simbiose , Vespas/genética
16.
Zootaxa ; 3702: 473-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26146740

RESUMO

Walkerella is an Old World genus of non-pollinating fig wasps in the subfamily Otitesellinae (Chalcidoidea, Pteromalidae). It is the most widely distributed genus of the subfamily, though there has been only six known world species. This paper describes two new species associated with the host Ficus subsection Conosycea of section Urostigma, subgenus Urostigma in Xishuangbanna, China. The two new species, Walkerella nigrabdomina Ma & Yang sp. nov. and W. curtipedis Ma & Yang sp. nov., are described from specimens reared from Ficus pisocarpa and Ficus curtipes, respectively. A key to all described species of Walkerella found is provided.


Assuntos
Vespas/anatomia & histologia , Vespas/classificação , Animais , China , Feminino , Cabeça/anatomia & histologia , Masculino , Asas de Animais/anatomia & histologia
17.
Zootaxa ; 3734: 371-9, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25277919

RESUMO

The genus Bannapone was described in 2000 on the basis of a single dealate queen specimen. Since its original collection in Yunnan, China, no other specimen has been reported, making it one of the rarest ant genera in the world. Here we report the collection of two workers of Bannapone also from Yunnan province. The description of the worker caste is presented. Furthermore, we found significant differences with the described B. mulanae Xu, 2000 which leads us to describe the workers as a new species, B. scrobiceps n. sp.. Finally, we briefly discuss the importance of leaf-litter collection methods to collect taxa considered as "rare".


Assuntos
Formigas/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Formigas/anatomia & histologia , Formigas/crescimento & desenvolvimento , Ecossistema , Feminino , Masculino , Tamanho do Órgão
18.
iScience ; 26(2): 106037, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36714013

RESUMO

There are currently no effective therapies for COVID-19 or antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and vaccines appear less effective against new SARS-CoV-2 variants; thus, there is an urgent need to understand better the virulence mechanisms of SARS-CoV-2 and the host response to develop therapeutic agents. Herein, we show that host Neu1 regulates coronavirus replication by controlling sialylation on coronavirus nucleocapsid protein. Coronavirus nucleocapsid proteins in COVID-19 patients and in coronavirus HCoV-OC43-infected cells were heavily sialylated; this sialylation controlled the RNA-binding activity and replication of coronavirus. Neu1 overexpression increased HCoV-OC43 replication, whereas Neu1 knockdown reduced HCoV-OC43 replication. Moreover, a newly developed Neu1 inhibitor, Neu5Ac2en-OAcOMe, selectively targeted intracellular sialidase, which dramatically reduced HCoV-OC43 and SARS-CoV-2 replication in vitro and rescued mice from HCoV-OC43 infection-induced death. Our findings suggest Neu1 inhibitors could be used to limit SARS-CoV-2 replication in patients with COVID-19, making Neu1 a potential therapeutic target for COVID-19 and future coronavirus pandemics.

19.
Ecology ; 104(7): e4062, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186391

RESUMO

Ecological interactions among plants, insect herbivores, and parasitoids are pervasive in nature and play important roles in community assembling, but the codiversification of tri-trophic interactions has received less attention. Here we compare pairwise codiversification patterns between a set of 22 fig species, their herbivorous pollinating and galling wasps, and their parasitoids. The parasitoid phylogeny showed significant congruence and more cospeciation events with host insects phylogeny than with host plants. These results suggest that parasitoid phylogeny and speciation is more closely related to their host insects than to their host plants. The pollinating wasps hosted more parasitoid species than gallers and indicated a more intense interspecific competition among parasitoids associated with pollinators. Closer matching and fewer evolutionary host shifts were found between parasitoids and galler hosts than between parasitoids and pollinator hosts. These results suggest that interspecific competition among parasitoids, rather than resource availability of host wasps, is the main driver of the codiversification pattern in this community. Therefore, our study highlights the important role of interspecific competition among high trophic level insects in plant-insect tri-trophic community assembling.


Assuntos
Vespas , Animais , Filogenia , Plantas , Especificidade de Hospedeiro , Ecologia , Interações Hospedeiro-Parasita
20.
BMC Genomics ; 13: 276, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726496

RESUMO

BACKGROUND: Lepidoptera encompasses more than 160,000 described species that have been classified into 45-48 superfamilies. The previously determined Lepidoptera mitochondrial genomes (mitogenomes) are limited to six superfamilies of the lineage Ditrysia. Compared with the ancestral insect gene order, these mitogenomes all contain a tRNA rearrangement. To gain new insights into Lepidoptera mitogenome evolution, we sequenced the mitogenomes of two ghost moths that belong to the non-ditrysian lineage Hepialoidea and conducted a comparative mitogenomic analysis across Lepidoptera. RESULTS: The mitogenomes of Thitarodes renzhiensis and T. yunnanensis are 16,173 bp and 15,816 bp long with an A + T content of 81.28 % and 82.34 %, respectively. Both mitogenomes include 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and the A + T-rich region. Different tandem repeats in the A + T-rich region mainly account for the size difference between the two mitogenomes. All the protein-coding genes start with typical mitochondrial initiation codons, except for cox1 (CGA) and nad1 (TTG) in both mitogenomes. The anticodon of trnS(AGN) in T. renzhiensis and T. yunnanensis is UCU instead of the mostly used GCU in other sequenced Lepidoptera mitogenomes. The 1,584-bp sequence from rrnS to nad2 was also determined for an unspecified ghost moth (Thitarodes sp.), which has no repetitive sequence in the A + T-rich region. All three Thitarodes species possess the ancestral gene order with trnI-trnQ-trnM located between the A + T-rich region and nad2, which is different from the gene order trnM-trnI-trnQ in all previously sequenced Lepidoptera species. The formerly identified conserved elements of Lepidoptera mitogenomes (i.e. the motif 'ATAGA' and poly-T stretch in the A + T-rich region and the long intergenic spacer upstream of nad2) are absent in the Thitarodes mitogenomes. CONCLUSION: The mitogenomes of T. renzhiensis and T. yunnanensis exhibit unusual features compared with the previously determined Lepidoptera mitogenomes. Their ancestral gene order indicates that the tRNA rearrangement event(s) likely occurred after Hepialoidea diverged from other lepidopteran lineages. Characterization of the two ghost moth mitogenomes has enriched our knowledge of Lepidoptera mitogenomes and contributed to our understanding of the mechanisms underlying mitogenome evolution, especially gene rearrangements.


Assuntos
Ordem dos Genes/genética , Genes de Insetos/genética , Genoma Mitocondrial/genética , Lepidópteros/genética , Mariposas/genética , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa