Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673797

RESUMO

Fibroblast growth factor 21 (FGF21) plays a crucial role in metabolism and brain function. Glucosamine (GLN) has been recognized for its diverse beneficial effects. This study aimed to elucidate the modulation of FGF21 production by GLN and its impact on learning and memory functions. Using both in vivo and in vitro models, we investigated the effects of GLN on mice fed with a normal diet or high-fat diet and on mouse HT22 hippocampal cells, STHdhQ7/Q7 striatal cells, and rat primary cortical neurons challenged with GLN. Our results indicated that GLN promotes learning and memory functions in mice and upregulates FGF21 expression in the hippocampus, cortex, and striatum, as well as in HT22 cells, STHdhQ7/Q7 cells, and cortical neurons. In animals receiving GLN together with an FGF21 receptor FGFR1 inhibitor (PD173074), the GLN-enhanced learning and memory functions and induction of FGF21 production in the hippocampus were significantly attenuated. While exploring the underlying molecular mechanisms, the potential involvement of NF-κB, Akt, p38, JNK, PKA, and PPARα in HT22 and NF-κB, Akt, p38, and PPARα in STHdhQ7/Q7 were noted; GLN was able to mediate the activation of p65, Akt, p38, and CREB in HT22 and p65, Akt, and p38 in STHdhQ7/Q7 cells. Our accumulated findings suggest that GLN may increase learning and memory functions by inducing FGF21 production in the brain. This induction appears to be mediated, at least in part, through GLN's activation of the NF-κB, Akt, p38, and PKA/CREB pathways.


Assuntos
Fatores de Crescimento de Fibroblastos , Glucosamina , Hipocampo , Aprendizagem , Memória , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Glucosamina/farmacologia , Camundongos , Memória/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Ratos , Masculino , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000427

RESUMO

The amyloid-beta peptide (Aß) is the neurotoxic component in senile plaques of Alzheimer's disease (AD) brains. Previously we have reported that Aß toxicity is mediated by the induction of sonic hedgehog (SHH) to trigger cell cycle re-entry (CCR) and apoptosis in post-mitotic neurons. Basella alba is a vegetable whose polysaccharides carry immunomodulatory and anti-cancer actions, but their protective effects against neurodegeneration have never been reported. Herein, we tested whether polysaccharides derived from Basella alba (PPV-6) may inhibit Aß toxicity and explored its underlying mechanisms. In differentiated rat cortical neurons, Aß25-35 reduced cell viability, damaged neuronal structure, and compromised mitochondrial bioenergetic functions, all of which were recovered by PPV-6. Immunocytochemistry and western blotting revealed that Aß25-35-mediated induction of cell cycle markers including cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) in differentiated neurons was all suppressed by PPV-6, along with mitigation of caspase-3 cleavage. Further studies revealed that PPV-6 inhibited Aß25-35 induction of SHH; indeed, PPV-6 was capable of suppressing neuronal CCR and apoptosis triggered by the exogenous N-terminal fragment of sonic hedgehog (SHH-N). Our findings demonstrated that, in the fully differentiated neurons, PPV-6 exerts protective actions against Aß neurotoxicity via the downregulation of SHH to suppress neuronal CCR and apoptosis.


Assuntos
Peptídeos beta-Amiloides , Apoptose , Ciclo Celular , Proteínas Hedgehog , Neurônios , Polissacarídeos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Proteínas Hedgehog/metabolismo , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Apoptose/efeitos dos fármacos , Ratos , Polissacarídeos/farmacologia , Polissacarídeos/química , Ciclo Celular/efeitos dos fármacos , Fragmentos de Peptídeos , Sobrevivência Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
3.
J Neuroinflammation ; 19(1): 56, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35219323

RESUMO

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in the huntingtin (HTT) gene. When the number of CAG repeats exceeds 36, the translated expanded polyglutamine-containing HTT protein (mutant HTT [mHTT]) interferes with the normal functions of many cellular proteins and subsequently jeopardizes important cellular machineries in major types of brain cells, including neurons, astrocytes, and microglia. The NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome, which comprises NLRP3, ASC, and caspase-1, is involved in the activation of IL-1ß and IL-18 and has been implicated in various biological functions. Although the existence of the NLRP3 inflammasome in the brain has been documented, the roles of the NLRP3 inflammasome in HD remain largely uncharacterized. MCC950 is a highly selective and potent small-molecule inhibitor of NLRP3 that has been used for the treatment of several diseases such as Alzheimer's disease. However, whether MCC950 is also beneficial in HD remains unknown. Therefore, we hypothesized that MCC950 exerts beneficial effects in a transgenic mouse model of HD. METHODS: To evaluate the effects of MCC950 in HD, we used the R6/2 (B6CBA-Tg[HDexon1]62Gpb/1J) transgenic mouse model of HD, which expresses exon 1 of the human HTT gene carrying 120 ± 5 CAG repeats. Male transgenic R6/2 mice were treated daily with MCC950 (10 mg/kg of body weight; oral administration) or water for 5 weeks from the age of 7 weeks. We examined neuronal density, neuroinflammation, and mHTT aggregation in the striatum of R6/2 mice vs. their wild-type littermates. We also evaluated the motor function, body weight, and lifespan of R6/2 mice. RESULTS: Systematic administration of MCC950 to R6/2 mice suppressed the NLRP3 inflammasome, decreased IL-1ß and reactive oxygen species production, and reduced neuronal toxicity, as assessed based on increased neuronal density and upregulation of the NeuN and PSD-95 proteins. Most importantly, oral administration of MCC950 increased neuronal survival, reduced neuroinflammation, extended lifespan, and improved motor dysfunction in R6/2 mice. CONCLUSIONS: Collectively, our findings indicate that MCC950 exerts beneficial effects in a transgenic mouse model of HD and has therapeutic potential for treatment of this devastating neurodegenerative disease.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Inflamassomos/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroproteção
4.
Int J Mol Sci ; 19(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115884

RESUMO

Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as a morphogen possessing critical characters for neural development during embryogenesis. Recently, however, Shh has emerged as an important modulator in adult neural tissues through different mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore, Shh may potentially have clinical application in neurodegenerative diseases and brain injuries. In this article, we present some examples, including ours, to show different aspects of Shh signaling and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models, both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a rationale to design innovative therapeutic regimens for various neurodegenerative diseases.


Assuntos
Proteínas Hedgehog/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurogênese , Adulto , Animais , Antioxidantes/metabolismo , Autofagia , Humanos , Transdução de Sinais
5.
J Neurochem ; 140(6): 845-861, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28027414

RESUMO

Previously, we have reported that pre-conditioning of primary rat cortical neurons with brain-derived neurotrophic factor (BDNF) may exert neuroprotective effects against 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor. However, the underlying mechanisms, especially potential involvements of autophagy, remain elusive. In this work, we tested the hypothesis that BDNF may suppress 3-NP-induced autophagy to exert its neuroprotective effects by inducing the expression of p62/sequestosome-1 in primary cortical neurons. We found that 3-NP increased total level of microtubule-associated protein 1A/1B-light chain (LC)-3 as well as the LC3-II/LC3-I ratio, an index of autophagy, in primary cortical neurons. BDNF decreased LC3-II/LC3-I ratio and time-dependently induced expression of p62. Knockdown of p62 by siRNA restored LC3-II/LC3-I ratio and increased total LC3 levels associated with BDNF exposure; p62 knockdown also abolished BDNF-dependent neuroprotection against 3-NP. Upstream of p62, we found that BDNF triggered phosphorylation of mammalian target of rapamycin (mTOR) and its downstream mediator p70S6K; importantly, the mTOR inhibitor rapamycin reduced both BDNF-dependent p62 induction as well as 3-NP resistance. BDNF is known to induce c-Jun in cortical neurons. We found that c-Jun knockdown in part attenuated BDNF-mediated p62 induction, whereas p62 knockdown had no significant effects on c-Jun expression. In addition to suppressing p62 induction, rapamycin also partially suppressed BDNF-induced c-Jun expression, but c-Jun knockdown failed to affect mTOR activation. Together, our results suggested that BDNF inhibits 3-NP-induced autophagy via, at least in part, mTOR/c-Jun-dependent induction of p62 expression, together contributing to neuroprotection against mitochondrial inhibition.


Assuntos
Autofagia/fisiologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Neuroproteção/fisiologia , Proteína Sequestossoma-1/fisiologia , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Feminino , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Nitrocompostos/toxicidade , Gravidez , Propionatos/toxicidade , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 18(3)2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273832

RESUMO

In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) as well as erythropoietin (EPO)-dependent stimulation of sonic hedgehog (SHH). We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO), cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), and nuclear factor-κB (NF-κB). Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR) with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration.


Assuntos
Apoptose , Autofagia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrocompostos/farmacologia , Nitrocompostos/toxicidade , Proteínas Nucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Propionatos/farmacologia , Propionatos/toxicidade , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Biochim Biophys Acta ; 1853(10 Pt A): 2306-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25986861

RESUMO

Oncostatin M (OSM), a cytokine in the interleukin-6 (IL-6) family, has been proposed to play a protective role in the central nervous system, such as attenuation of excitotoxicity induced by N-methyl-D-aspartate (NMDA) and glutamate. However, the potential neuroprotective effects of OSM against mitochondrial dysfunction have never been reported. In the present study, we tested the hypothesis that OSM may confer neuronal resistance against 3-nitropropionic acid (3-NP), a plant toxin that irreversibly inhibits the complex II of the mitochondrial electron transport chain, and characterized the underlying molecular mechanisms. We found that OSM preconditioning dose- and time-dependently protected cortical neurons against 3-NP toxicity. OSM stimulated expression of myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic Bcl-2 family member expressed in differentiating myeloid cells, that required prior phosphorylation of Janus kinase-1 (JAK1), JAK2, extracellular signal-regulated kinase-1/2 (ERK1/2), signal transducer and activator of transcription-3 (STAT3), STAT1, and cAMP-response element-binding protein (CREB). Pharmacological inhibitors of JAK1, JAK2, ERK1/2, STAT3, STAT1, and CREB as well as the siRNA targeting at STAT3 and Mcl-1 all abolished OSM-dependent 3-NP resistance. Finally, OSM-dependent Mcl-1 induction contributed to the enhancements of mitochondrial bioenergetics including increases in spare respiratory capacity and ATP production. In conclusion, our findings indicated that OSM induces Mcl-1 expression via activation of ERK1/2, JAK1/2, STAT1/3, and CREB; furthermore, OSM-mediated Mcl-1 induction contributes to bioenergetic improvements and neuroprotective effects against 3-NP toxicity in cortical neurons. OSM may thus serve as a novel neuroprotective agent against mitochondrial dysfunction commonly associated with pathogenic mechanisms underlying neurodegeneration.


Assuntos
Córtex Cerebral/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/fisiologia , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neurônios/metabolismo , Oncostatina M/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Hipertensivos/efeitos adversos , Anti-Hipertensivos/farmacologia , Córtex Cerebral/citologia , Metabolismo Energético/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neurônios/citologia , Nitrocompostos/efeitos adversos , Nitrocompostos/farmacologia , Propionatos/efeitos adversos , Propionatos/farmacologia , Ratos
8.
J Biomed Sci ; 23(1): 44, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27175924

RESUMO

BACKGROUND: Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein that, upon phosphorylation at serine 616 (p-Drp1(Ser616)), plays a pivotal role in neuronal death after ischemia. In the present study, we hypothesized that peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent pathway can reduce the expression of p-Drp1(Ser616) and ameliorate hippocampal injury induced by global ischemia in rats. RESULTS: We found that pretreatment of the rats with Mdivi-1, a selective Drp1 inhibitor, decreased the level of transient global ischemia (TGI)-induced p-Drp1(Ser616) and reduced cellular contents of oxidized proteins, activated caspase-3 expression as well as the extent of DNA fragmentation. Delivery of siRNA against Drp1 attenuated the expression of p-Drp1(Ser616) that was accompanied by alleviation of the TGI-induced protein oxidation, activated caspase-3 expression and DNA fragmentation in hippocampal proteins. Exogenous application of pioglitazone, a PPARγ agonist, reduced the p-Drp1(Ser616) expression, decreased TGI-induced oxidative stress and activated caspase-3 expression, lessened the extents of DNA fragmentation, and diminished the numbers of TUNEL-positive neuronal cells; all of these effects were reversed by GW9662, a PPARγ antagonist. CONCLUSIONS: Our findings thus indicated that inhibition of TGI-induced p-Drp1(Ser616) expression by Drp1 inhibitor and Drp1-siRNA can decrease protein oxidation, activated caspase-3 expression and neuronal damage in the hippocampal CA1 subfield. PPARγ agonist, through PPARγ-dependent mechanism and via decreasing p-Drp1(Ser616) expression, can exert anti-oxidative and anti-apoptotic effects against ischemic neuronal injury.


Assuntos
Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/lesões , Região CA1 Hipocampal/metabolismo , Dinaminas/biossíntese , PPAR gama/metabolismo , Transdução de Sinais , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Dinaminas/genética , Masculino , Fosforilação/efeitos dos fármacos , Quinazolinonas/farmacologia , Ratos , Ratos Sprague-Dawley
9.
Biochem Biophys Res Commun ; 460(2): 397-403, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25791474

RESUMO

Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616.


Assuntos
Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Hipocampo/metabolismo , Neurônios/patologia , Proteínas Quinases/metabolismo , Animais , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 16(11): 26406-16, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26556340

RESUMO

Recent studies suggested that sestrin2 is a crucial modulator for the production of reactive oxygen species (ROS). In addition, sestrin2 may also regulate ribosomal protein S6 (RpS6), a molecule important for protein synthesis, through the effect of mammalian target of rapamycin (mTOR) complex that is pivotal for longevity. However, the roles of sestrin2 in cerebral ischemia, in which oxidative stress is one of the major pathogenic mechanisms, are still less understood. In this study, we hypothesized that sestrin2 may protect hippocampal CA1 neurons against transient global ischemia (TGI)-induced apoptosis by regulating RpS6 phosphorylation in rats. We found that sestrin2 expression was progressively increased in the hippocampal CA1 subfield 1-48 h after TGI, reaching the maximal level at 24 h, and declined thereafter. Further, an increased extent of RpS6 phosphorylation, but not total RpS6 protein level, was observed in the hippocampal CA1 subfield after TGI. The sestrin2 siRNA, which substantially blocked the expression of TGI-induced sestrin2, also abolished RpS6 phosphorylation. TGI with reperfusion may induce oxidative stress with the resultant formation of 8-hydroxy-deoxyguanosine (8-OHdG). We found that sestrin2 siRNA further augmented the formation of 8-OHdG induced by TGI with reperfusion for 4 h. Consistently, sestrin2 siRNA also enhanced apoptosis induced by TGI with reperfusion for 48 h based on the analysis of DNA fragmentation by agarose gel electrophoresis, DNA fragmentation sandwich ELISA, and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Together these findings indicated that TGI-induced sestrin2 expression contributed to RpS6 phosphorylation and neuroprotection against ischemic injury in the hippocampal CA1 subfield.


Assuntos
Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Proteínas Nucleares/metabolismo , Células Piramidais/metabolismo , Proteína S6 Ribossômica/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Expressão Gênica , Inativação Gênica , Ataque Isquêmico Transitório/genética , Masculino , Proteínas Nucleares/genética , Estresse Oxidativo , Células Piramidais/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Proteína S6 Ribossômica/genética
11.
Neurobiol Dis ; 46(2): 450-62, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22402332

RESUMO

In current study, we tested the hypothesis that c-Jun-dependent sulfiredoxin expression mediates protective effects of brain-derived neurotrophic factor (BDNF) against neurotoxicity induced by 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, in primary rat cortical cultures. We found that BDNF-dependent c-Jun expression and nuclear translocation required prior phosphorylation of extracellular signal-regulated kinase (ERK)1/2, but not Akt. BDNF also transiently activated the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, at both mRNA and protein levels. Furthermore, both c-Jun siRNA and ERK1/2 inhibitor PD98059 suppressed BDNF-induced sulfiredoxin expression. Finally, PD98059, c-Jun siRNA, and sulfiredoxin siRNA all abrogated BDNF-mediated 3-NP resistance. Together, these results established a signaling cascade of "BDNF → ERK1/2-Pi → c-Jun → sulfiredoxin → 3-NP resistance". We therefore conclude that c-Jun-induced sulfiredoxin mediates the BDNF-dependent neuroprotective effects against 3-NP toxicity in primary rat cortical neurons, at least in part.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Mitocôndrias/enzimologia , Inibição Neural/fisiologia , Neurônios/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/biossíntese , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Indução Enzimática/fisiologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrocompostos/antagonistas & inibidores , Nitrocompostos/toxicidade , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Propionatos/antagonistas & inibidores , Propionatos/toxicidade , Ratos , Ratos Sprague-Dawley
12.
J Ginseng Res ; 46(4): 572-584, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35818427

RESUMO

Background: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of trinucleotide CAG repeat in the Huntingtin (Htt) gene. The major pathogenic pathways underlying HD involve the impairment of cellular energy homeostasis and DNA damage in the brain. The protein kinase ataxia-telangiectasia mutated (ATM) is an important regulator of the DNA damage response. ATM is involved in the phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK plays a critical role in response to DNA damage. Herein, we demonstrated that expression of polyQ-expanded mutant Htt (mHtt) enhanced the phosphorylation of ATM. Ginsenoside is the main and most effective component of Panax ginseng. However, the protective effect of a ginsenoside (compound K, CK) in HD remains unclear and warrants further investigation. Methods: This study used the R6/2 transgenic mouse model of HD and performed behavioral tests, survival rate, histological analyses, and immunoblot assays. Results: The systematic administration of CK into R6/2 mice suppressed the activation of ATM/AMPK and reduced neuronal toxicity and mHTT aggregation. Most importantly, CK increased neuronal density and lifespan and improved motor dysfunction in R6/2 mice. Conversely, CK enhanced the expression of Bcl2 protected striatal cells from the toxicity induced by the overactivation of mHtt and AMPK. Conclusions: Thus, the oral administration of CK reduced the disease progression and markedly enhanced lifespan in the transgenic mouse model (R6/2) of HD.

13.
Int J Mol Sci ; 12(10): 7199-215, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22072942

RESUMO

The primary physiological function of mitochondria is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Overproduction of reactive oxygen species (ROS) as byproducts generated from mitochondria have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was well-documented that mitochondria-dependent apoptotic pathway involves pro- and anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal death. On the other hand, mitochondria also play a role to counteract the detrimental effects elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves peroxisome proliferative activated receptor-γ (PPARγ) co-activator 1α (PGC1-α). PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that is vital for cell survival. Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke. This review aims to summarize the current knowledge focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, and mitochondrial biogenesis.


Assuntos
Apoptose , Isquemia Encefálica/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Isquemia Encefálica/patologia , Humanos , Canais Iônicos/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Proteína Desacopladora 2
14.
Free Radic Biol Med ; 169: 36-61, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33852931

RESUMO

Accumulation of senile plaques mainly composed of neurotoxic amyloid-beta peptide (Aß) is a pathological hallmark of Alzheimer's disease (AD). Sestrin2 inducible by various types of stressors is known to promote autophagy and exert antioxidative effects. In this work, we revealed the molecular mechanisms underlying Aß induction of sestrin2 and tested whether antioxidation, in addition to autophagy regulation, also contributes to its neuroprotective effects in primary rat cortical neurons. We found that Aß25-35 triggered nuclear translocation of p65 and p50, two subunits of nuclear factor-kappaB (NF-κB), and p53. Aß25-35-induced sestrin2 expression was abolished by the p65 siRNA, the NF-κB inhibitor SN50, and the p53 inhibitor pifithrin-alpha (PFT-α). Further, Aß25-35 enhanced binding of p50 and p53 to sestrin2 gene promoter that was abolished respectively by the p50 shRNA and PFT-α. Both p50 shRNA and PFT-α attenuated Aß25-35-induced expression as well as nuclear translocation of all three transcription factors, namely p65, p50, and p53. Interestingly, p50 binding to the promoters of its target genes required p53 activity, whereas p50 also negatively regulated p53 binding to its target sequences. Suppression of sestrin2 expression by siRNA enhanced Aß25-35- and Aß1-42-induced production of reactive oxygen species (ROS), lipid peroxidation, and formation of 8-hydroxy-2-deoxyguanosine (8-OH-dG). In contrast, overexpression of the sestrin2 N-terminal or C-terminal fragments neutralized Aß25-35-induced ROS production. We concluded that Aß-induced sestrin2 contributing to antioxidant effects in neurons is in part mediated by p53 and NF-κB, which also mutually affect the expression of each other.


Assuntos
Antioxidantes , NF-kappa B , Peptídeos beta-Amiloides/toxicidade , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética
15.
Biomedicines ; 9(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680426

RESUMO

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease. It presents with progressive memory loss, worsens cognitive functions to the point of disability, and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive generation of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function, and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been conducted up to now. In this article, we discuss current experimental evidence to demonstrate the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD. Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful conditions through counteracting oxidative stress, and may also adjust the autophagy process, these two effects together conferring neuronal resistance in cases of AD.

16.
Mol Neurobiol ; 58(5): 2204-2214, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417224

RESUMO

Dual-specificity phosphatases (DUSPs) comprise a unique group of enzymes that dephosphorylate signaling proteins at both phospho-serine/threonine and phospho-tyrosine residues. Since Notch signaling is an essential pathway for neuronal cell fate determination and development that is also upregulated in Alzheimer's disease tissues, we sought to explore whether and how DUSPs may impact Notch processing. Our results show that overexpression of DUSP15 concomitantly and dose-dependently increased the steady-state levels of recombinant Notch (extracellular domain-truncated Notch, NotchΔE) protein and its cleaved product, Notch intracellular domain (NICD). The overall ratio of NotchΔE to NICD was unchanged by overexpression of DUSP15, suggesting that the effect is independent of γ-secretase. Interestingly, overexpression of DUSP15 also dose-dependently increased phosphorylated ERK1/2. Phosphorylated ERK1/2 is known to be positively correlated with Notch protein level, and we found that DUSP15-mediated regulation of Notch was dependent on ERK1/2 activity. Together, our findings reveal the existence of a previously unidentified DUSP15-ERK1/2-Notch signaling axis, which could potentially play a role in neuronal differentiation and neurological disease.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Neurônios/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Diferenciação Celular/fisiologia , Células HEK293 , Humanos , Fosforilação
17.
Neurobiol Dis ; 40(1): 146-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20580927

RESUMO

Brain-derived neurotrophic factor (BDNF) deficiency and mitochondrial dysfunction have been implicated in the pathogenesis of Huntington's disease (HD). 3-Nitropropionic acid (3-NP) is a mitochondrial inhibitor commonly used as a pharmacological model mimicking HD. We have recently reported that preconditioning of primary rat cortical cultures with BDNF induces sonic hedgehog (SHH), which contributes to the protective effects of BDNF against 3-NP neurotoxicity. Because carbamylated erythropoietin (EPO) may induce SHH, we investigated whether BDNF-dependent SHH expression and 3-NP resistance require prior induction of EPO. We found that BDNF induced EPO expression at both mRNA and protein levels. BDNF-mediated SHH induction and 3-NP resistance were abolished by the soluble EPO receptor (sEPO-R), an EPO inhibitor. Recombinant rat EPO (rEPO) induced SHH and attenuated 3-NP neurotoxicity. The rEPO-dependent neuroprotection was suppressed by the SHH inhibitor cyclopamine (CPM); however, sEPO-R failed to affect SHH neuroprotection. Furthermore, the rEPO-dependent neuroprotection was not suppressed by the BDNF neutralizing antibody, which completely abolished BDNF-mediated 3-NP resistance at the same dosage. Overall, our results demonstrate that BDNF-dependent SHH expression and 3-NP resistance require prior induction of EPO, thus establishing a signaling cascade of "BDNF-->EPO-->SHH-->3-NP resistance" in rat cortical neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Eritropoetina/fisiologia , Proteínas Hedgehog/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Resistência a Medicamentos , Eritropoetina/antagonistas & inibidores , Eritropoetina/biossíntese , Retroalimentação Fisiológica/fisiologia , Mitocôndrias/patologia , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Nitrocompostos/antagonistas & inibidores , Nitrocompostos/farmacologia , Propionatos/antagonistas & inibidores , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores da Eritropoetina/fisiologia , Transdução de Sinais/fisiologia
18.
J Neurosci Res ; 88(3): 605-13, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19774674

RESUMO

Peroxisome proliferator-activated receptors gamma coactivator-1alpha (PGC-1alpha) may regulate the mitochondrial antioxidant defense system under many neuropathological settings. However, the exact role of PGC-1alpha in ischemic brain damage is still under debate. Based on an experimental model of transient global ischemia (TGI), this study evaluated the hypothesis that the activation of PGC-1alpha signaling pathway protects hippocampal CA1 neurons against delayed neuronal death after TGI. In Sprague-Dawley rats, significantly increased content of oxidized proteins in the hippocampal CA1 tissue was observed as early as 30 min after TGI, followed by augmentation of PGC-1alpha expression at 1 hr. Expression of uncoupling protein 2 (UCP2) and superoxide dismutases 2 (SOD2) in the hippocampal CA1 neurons was upregulated 4-48 hr after TGI. In addition, knock-down of PGC-1alpha expression by pretreatment with a specific antisense oligodeoxynucleotide in the hippocampal CA1 subfield downregulated the expression of UCP2 and SOD2 with resultant exacerbation of oxidative stress and augmentation of delayed neuronal cell death in the hippocampus after TGI. Overall, our results indicate that PGC-1alpha is induced by cerebral ischemia leading to upregulation of UCP2 and SOD2, thereby providing a neuroprotective effect against ischemic brain injury in the hippocampus by ameliorating oxidative stress.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Canais Iônicos/metabolismo , Ataque Isquêmico Transitório/fisiopatologia , Proteínas Mitocondriais/metabolismo , Neurônios/fisiologia , Proteínas de Ligação a RNA/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Morte Celular/fisiologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Masculino , Oligonucleotídeos Antissenso , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Proteína Desacopladora 2 , Regulação para Cima
19.
J Neurosci Res ; 88(14): 3144-54, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20799369

RESUMO

Delayed neuronal cell death occurs in the vulnerable CA1 subfield of the hippocampus after transient global ischemia (TGI). We demonstrated previously, based on an experimental model of TGI, that the significantly increased content of oxidized proteins in hippocampal CA1 neuron was observed as early as 30 min after TGI, followed by augmentation of PGC-1α expression at 1 hr, as well as up-regulation of mitochondrial uncoupling protein 2 (UCP2) and superoxide dismutases 2 (SOD2). Using the same animal model, the present study investigated the role of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and PGC-1α in delayed neuronal cell death and mitochondrial biogenesis in the hippocampus. In Sprague-Dawley rats, significantly increased expression of nuclear CaMKIV was noted in the hippocampal CA1 subfield as early as 15 min after TGI. In addition, the index of mitochondrial biogenesis, including a mitochondrial DNA-encoded polypeptide, cytochrome c oxidase subunit 1 (COX1), and mitochondrial number significantly increased in the hippocampal CA1 subfield 4 hr after TGI. Application bilaterally into the hippocampal CA1 subfield of an inhibitor of CaMKIV, KN-93, 30 min before TGI attenuated both CaMKIV and PGC-1α expression, followed by down-regulation of UCP2 and SOD2, decrease of COX1 expression and mitochondrial number, heightened protein oxidation, and enhanced hippocampal CA1 neuronal damage. This study provides correlative evidence for the neuroprotective cascade of CaMKIV/PGC-1α which implicates at least in part the mitochondrial antioxidants UCP2 and SOD2 as well as mitochondrial biogenesis in ischemic brain injury.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Região CA1 Hipocampal/patologia , Morte Celular/fisiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Canais Iônicos/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Proteína Desacopladora 2
20.
Cells ; 9(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708313

RESUMO

Inhibitor of DNA-binding/differentiation (Id) proteins, a family of helix-loop-helix (HLH) proteins that includes four members of Id1 to Id4 in mammalian cells, are critical for regulating cell growth, differentiation, senescence, cell cycle progression, and increasing angiogenesis and vasculogenesis, as well as accelerating the ability of cell migration. Alzheimer's disease (AD), the most common neurodegenerative disease in the adult population, manifests the signs of cognitive decline, behavioral changes, and functional impairment. The underlying mechanisms for AD are not well-clarified yet, but the aggregation of amyloid-beta peptides (Aßs), the major components in the senile plaques observed in AD brains, contributes significantly to the disease progression. Emerging evidence reveals that aberrant cell cycle reentry may play a central role in Aß-induced neuronal demise. Recently, we have shown that several signaling mediators, including Id1, hypoxia-inducible factor-1 (HIF-1), cyclin-dependent kinases-5 (CDK5), and sonic hedgehog (Shh), may contribute to Aß-induced cell cycle reentry in postmitotic neurons; furthermore, Id1 and CDK5/p25 mutually antagonize the expression/activity of each other. Therefore, Id proteins may potentially have clinical applications in AD. In this review article, we introduce the underlying mechanisms for cell cycle dysregulation in AD and present some examples, including our own studies, to show different aspects of Id1 in terms of cell cycle reentry and other signaling that may be crucial to alter the neuronal fates in this devastating neurodegenerative disease. A thorough understanding of the underlying mechanisms may provide a rationale to make an earlier intervention before the occurrence of cell cycle reentry and subsequent apoptosis in the fully differentiated neurons during the progression of AD or other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Ciclo Celular , Proteína 1 Inibidora de Diferenciação/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Morte Celular , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa