Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glia ; 71(12): 2735-2752, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655904

RESUMO

The forkhead box transcription factor O1 (FoxO1) is expressed ubiquitously throughout the central nervous system, including in astrocytes, the most prevalent glial cell type in the brain. While the role of FoxO1 in hypothalamic neurons in controlling food intake and energy balance is well-established, the contribution of astrocytic FoxO1 in regulating energy homeostasis has not yet been determined. In the current study, we demonstrate the essential role of hypothalamic astrocytic FoxO1 in maintaining normal neuronal activity in the hypothalamus and whole-body glucose metabolism. Inhibition of FoxO1 function in hypothalamic astrocytes shifts the cellular metabolism from glycolysis to oxidative phosphorylation, enhancing astrocyte ATP production and release meanwhile decreasing astrocytic export of lactate. As a result, specific deletion of astrocytic FoxO1, particularly in the hypothalamus, causes a hyperactivation of hypothalamic neuropeptide Y neurons, which leads to an increase in acute feeding and impaired glucose regulation and ultimately results in diet-induced obesity and systemic glucose dyshomeostasis.

2.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572687

RESUMO

AMP-activated protein kinase (AMPK) plays a crucial role in the regulation of energy homeostasis in both peripheral metabolic organs and the central nervous system. Recent studies indicated that p-Coumaric acid (CA), a hydroxycinnamic phenolic acid, potentially activated the peripheral AMPK pathway to exert beneficial effects on glucose metabolism in vitro. However, CA's actions on central AMPK activity and whole-body glucose homeostasis have not yet been investigated. Here, we reported that CA exhibited different effects on peripheral and central AMPK activation both in vitro and in vivo. Specifically, while CA treatment promoted hepatic AMPK activation, it showed an inhibitory effect on hypothalamic AMPK activity possibly by activating the S6 kinase. Furthermore, CA treatment enhanced hypothalamic leptin sensitivity, resulting in increased proopiomelanocortin (POMC) expression, decreased agouti-related peptide (AgRP) expression, and reduced daily food intake. Overall, CA treatment improved blood glucose control, glucose tolerance, and insulin sensitivity. Together, these results suggested that CA treatment enhanced hypothalamic leptin signaling and whole-body glucose homeostasis, possibly via its differential effects on AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Glucose/metabolismo , Leptina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Homeostase/efeitos dos fármacos , Hipotálamo/metabolismo , Resistência à Insulina , Camundongos , Pró-Opiomelanocortina/metabolismo
3.
Molecules ; 25(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053781

RESUMO

The skin is the largest and a remarkably plastic organ that serves as a protective barrier against environmental stimuli and injuries throughout life. Skin injuries are serious health problems, and wound healing is a critical process to replace devitalized cellular and tissue structures. Although some endogenous opioids are known to be involved in the modulation of wound healing, it remains to be determined whether the ß-neoendorphin (ß-NEP), an endogenous opioid, has beneficial effects on wound repair in human keratinocyte. In this study, we found that ß-NEP accelerated wound repair through activation of mitogen-activated protein kinase (MAPK)/Erk1/2 signaling pathways in human keratinocytes. Moreover, the wound healing effect of ß-NEP is mainly through the acceleration of keratinocyte migration without affecting cell proliferation. Therefore, our studies reveal that ß-NEP plays an important role in the regulation of wound repair and suggest a therapeutic strategy to promote wound healing using ß-NEP.


Assuntos
Queratinócitos/efeitos dos fármacos , beta-Endorfina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
4.
Mar Drugs ; 16(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071627

RESUMO

Nicotinamide (NA), a water-soluble vitamin B3, has been shown to exert cellular-protective effects against reactive oxygen species (ROS). In order to improve the cellular-protective effects of NA, we synthesized a novel compound, nicotinyl⁻isoleucine⁻valine⁻histidine (NA⁻IVH), by combining NA with jellyfish peptides' IVH. In the present study, we examined the cellular-protective effects of the novel synthetic nicotinyl-peptide, NA⁻IVH. We found that NA⁻IVH enhances the radical scavenging activity with a robust increase of the nuclear factor (erythroid-derived 2)-like factor (Nrf2) expression in human HaCaT keratinocytes. In addition, NA⁻IVH protected the cells from hydrogen peroxide (H2O2)-induced cell death. Interestingly, NA⁻IVH exhibited an improved wound-healing effect in a high glucose condition, possibly through the regulation of reactive oxygen species (ROS). Collectively, our results imply that a novel nicotinyl-peptide, NA⁻IVH, has a wound-healing effect in a hyperglycemic condition, possibly by modulating excessive ROS.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Peptídeos/farmacologia , Antineoplásicos , Compostos de Bifenilo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Estrutura Molecular , Peptídeos/síntese química , Picratos , Espécies Reativas de Oxigênio
5.
Neural Plast ; 2016: 2754078, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547453

RESUMO

Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Homeostase/fisiologia , Hipotálamo/metabolismo , Animais , Ingestão de Alimentos/fisiologia , Humanos
6.
Molecules ; 21(7)2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27399667

RESUMO

Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.


Assuntos
Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Glucose/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Ácido Ascórbico/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Catalase/genética , Catalase/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/toxicidade , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Queratinócitos/citologia , Queratinócitos/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Picratos/antagonistas & inibidores , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
7.
Mar Drugs ; 13(12): 7055-66, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26703626

RESUMO

Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.


Assuntos
Cicloexanóis/farmacologia , Cicloexanonas/farmacologia , Cicloexilaminas/farmacologia , Glicina/análogos & derivados , Cicatrização/efeitos dos fármacos , Linhagem Celular , Chlamydomonas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Glicina/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Porphyra/química , Transdução de Sinais/efeitos dos fármacos
8.
J Phys Ther Sci ; 26(12): 1965-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25540509

RESUMO

[Purpose] We sought to examine the relationship between lifestyle behavior and physical fitness in middle-aged and elderly laborers. [Subjects] In total, 2,469 male laborers between 45 and 64 years of age residing in eight cities in South Korea were studied between January and December 2007. [Methods] Age, height, and weight were evaluated as general characteristics. Lifestyle behavior items included exercise, dietary habits, smoking, drinking, and sleeping hours. Physical fitness was assessed by measuring muscle strength, muscle endurance, flexibility, reflexes, and agility. [Results] In terms of physical fitness status, all items except handgrip strength showed significant changes according to exercise frequency. Dietary habits were associated with significant differences in the Sargent jump and whole-body reaction time between groups. Smoking and drinking were associated with significant differences in sit-ups between subgroups. Sleeping hours demonstrated significant differences in the Sargent jump and whole-body reaction time between groups. [Conclusion] Although there were differences according to physical fitness status, exercise frequency, dietary habits, smoking, drinking, and sleeping hours showed significant associations with physical fitness. Thus, healthy lifestyle behaviors, such as regular exercise, regular dietary habits, not smoking, moderate drinking, and adequate sleep, are important for physical fitness management and work capacity improvement in middle-aged and elderly laborers.

9.
Ergonomics ; 56(11): 1652-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24063648

RESUMO

Although the Work Ability Index (WAI) has been used in many countries, its reliability is yet to be validated in Korea. In our study, test-retest results of WAI total score, WAI category and seven subscales were compared. The correlation coefficients of WAI total score and subscales 1 and 2 between test and retest were 0.70, 0.80 and 0.63, respectively. The κ values on WAI category, subscales 4, 5, 6 and 7 were 0.52, 0.32, 0.31, 0.48 and 0.85, respectively. The results of our reliability test show that WAI scores of female, younger and private company workers were found to be higher than those of male, older and public company workers, respectively. We conclude that overall test-retest reliability of WAI in Korea is acceptable. Another notable observation from our study is that work ability dimension (subscales 1, 2 and 7) had a higher reliability, whereas health dimension (subscales 3-6) had a lower reliability.


Assuntos
Setor Privado , Setor Público , Inquéritos e Questionários , Avaliação da Capacidade de Trabalho , Adulto , Fatores Etários , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , República da Coreia , Fatores Sexuais , Adulto Jovem
10.
Adv Sci (Weinh) ; 10(14): e2205161, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36950748

RESUMO

Although activin receptor IIB (ACVR2B) is emerging as a novel pathogenic receptor, its ligand and assembled components (or assembly) are totally unknown in the context of osteoarthritis (OA) pathogenesis. The present results suggest that upregulation of ACVR2B and its assembly could affect osteoarthritic cartilage destruction. It is shown that the ACVR2B ligand, activin A, regulates catabolic factor expression through ACVR2B in OA development. Activin A Tg mice (Col2a1-Inhba) exhibit enhanced cartilage destruction, whereas heterozygous activin A KO mice (Inhba+/- ) show protection from cartilage destruction. In silico analysis suggests that the Activin A-ACVR2B axis is involved in Nox4-dependent ROS production. Activin A Tg:Nox4 KO (Col2a1-Inhba:Nox4-/- ) mice show inhibition of experimental OA pathogenesis. NOX4 directly binds to the C-terminal binding site on ACVR2B-ACVR1B and amplifies the pathogenic signal for cartilage destruction through SMAD2/3 signaling. Together, the findings reveal that the ACVR2B assembly, which comprises Activin A, ACVR2B, ACVR1B, Nox4, and AP-1-induced HIF-2α, accelerates OA development. Furthermore, it is shown that shRNA-mediated ACVR2B knockdown or trapping ligands of ACVR2B abrogate OA development by competitively disrupting the ACVR2B-Activin A interaction. These results suggest that the ACVR2B assembly is required to amplify osteoarthritic cartilage destruction and could be a potential therapeutic target in efforts to treat OA.


Assuntos
Condrócitos , Osteoartrite , Animais , Camundongos , Receptores de Ativinas/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Ligantes , NADPH Oxidase 4/metabolismo , Osteoartrite/metabolismo
11.
Metabolism ; 135: 155273, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926636

RESUMO

OBJECTIVE: Neuronal primary cilia are known to be a required organelle for energy balance and leptin action. However, whether primary cilia directly mediate adaptive responses during starvation is yet unknown. Therefore, we investigated the counterregulatory roles of primary cilia, and their related leptin action in energy-depleted condition. METHOD: We generated leptin receptor (LepR) neuron-specific primary cilia knockout (Ift88 KOLepR) mice. Leptin-mediated electrophysiological properties of the neurons in fasting condition were assessed using patch-clamp technique. Adaptive responses and neuroendocrine reflexes were measured by monitoring counterregulatory hormones. RESULTS: In fasting state, the leptin-induced neuronal excitability and leptin homeostasis were impaired in Ift88 KOLepR. In addition, the Ift88 KOLepR exhibited aberrant fasting responses including lesser body weight loss, decreased energy expenditure, and lower heat generation compared to wild-type littermates. Furthermore, the primary cilia in LepR neurons are necessary for counterregulatory responses and leptin-mediated neuroendocrine adaptation to starvation. CONCLUSION: Our results demonstrated that the neuronal primary cilia are crucial neuronal components mediating the adaptive counterregulatory responses to starvation.


Assuntos
Jejum , Leptina , Animais , Cílios/metabolismo , Metabolismo Energético/fisiologia , Leptina/farmacologia , Camundongos , Neurônios/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
12.
Exp Mol Med ; 53(7): 1109-1115, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34211092

RESUMO

Obesity is a global health problem that is associated with adverse consequences such as the development of metabolic disorders, including cardiovascular disease, neurodegenerative disorders, and type 2 diabetes. A major cause of obesity is metabolic imbalance, which results from insufficient physical activity and excess energy intake. Understanding the pathogenesis of obesity, as well as other metabolic disorders, is important in the development of methods for prevention and therapy. The coordination of energy balance takes place in the hypothalamus, a major brain region that maintains body homeostasis. The primary cilium is an organelle that has recently received attention because of its role in controlling energy balance in the hypothalamus. Defects in proteins required for ciliary function and formation, both in humans and in mice, have been shown to cause various metabolic disorders. In this review, we provide an overview of the critical functions of primary cilia, particularly in hypothalamic areas, and briefly summarize the studies on the primary roles of cilia in specific neurons relating to metabolic homeostasis.


Assuntos
Cílios/fisiologia , Hipotálamo/metabolismo , Obesidade/patologia , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Metabolismo Energético , Homeostase/fisiologia , Humanos , Hipotálamo/citologia , Leptina/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/metabolismo , Proteínas/genética , Proteínas/metabolismo
13.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33021968

RESUMO

Dysfunction of primary cilia is related to dyshomeostasis, leading to a wide range of disorders. The ventromedial hypothalamus (VMH) is known to regulate several homeostatic processes, but those modulated specifically by VMH primary cilia are not yet known. In this study, we identify VMH primary cilia as an important organelle that maintains energy and skeletal homeostasis by modulating the autonomic nervous system. We established loss-of-function models of primary cilia in the VMH by either targeting IFT88 (IFT88-KOSF-1) using steroidogenic factor 1-Cre (SF-1-Cre) or injecting an adeno-associated virus Cre (AAV-Cre) directly into the VMH. Functional impairments of VMH primary cilia were linked to decreased sympathetic activation and central leptin resistance, which led to marked obesity and bone-density accrual. Obesity was caused by hyperphagia, decreased energy expenditure, and blunted brown fat function and was also associated with insulin and leptin resistance. The effect of bone-density accrual was independent of obesity, as it was caused by decreased sympathetic tone resulting in increased osteoblastic and decreased osteoclastic activities in the IFT88-KOSF-1 and VMH primary cilia knockdown mice. Overall, our current study identifies VMH primary cilia as a critical hypothalamic organelle that maintains energy and skeletal homeostasis.


Assuntos
Osso e Ossos/metabolismo , Cílios/metabolismo , Metabolismo Energético , Homeostase , Núcleos Ventrais do Tálamo/metabolismo , Animais , Cílios/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo
14.
Exp Mol Med ; 51(4): 1-9, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028248

RESUMO

Phosphoinositide 3-kinase (PI3K) signaling in hypothalamic neurons integrates peripheral metabolic cues, including leptin and insulin, to coordinate systemic glucose and energy homeostasis. PI3K is composed of different subunits, each of which has several unique isoforms. However, the role of the PI3K subunits and isoforms in the ventromedial hypothalamus (VMH), a prominent site for the regulation of glucose and energy homeostasis, is unclear. Here we investigated the role of subunit p110ß in steroidogenic factor-1 (SF-1) neurons of the VMH in the regulation of metabolism. Our data demonstrate that the deletion of p110ß in SF-1 neurons disrupts glucose metabolism, rendering the mice insulin resistant. In addition, the deletion of p110ß in SF-1 neurons leads to the whitening of brown adipose tissues and increased susceptibility to diet-induced obesity due to blunted energy expenditure. These results highlight a critical role for p110ß in the regulation of glucose and energy homeostasis via VMH neurons.


Assuntos
Metabolismo Energético/fisiologia , Glucose/metabolismo , Hipotálamo/metabolismo , Animais , Hibridização In Situ , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Fator Esteroidogênico 1/metabolismo
15.
PLoS One ; 14(11): e0224674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31682617

RESUMO

Catecholamine excess reflecting an adrenergic overdrive of the sympathetic nervous system (SNS) has been proposed to link to hyperleptinemia in obesity and may contribute to the development of metabolic disorders. However, relationship between the catecholamine level and plasma leptin in obesity has not yet been investigated. Moreover, whether pharmacological blockade of the adrenergic overdrive in obesity by the third-generation beta-blocker agents such as carvedilol could help to prevent metabolic disorders is controversial and remains to be determined. Using the high fat diet (HFD)-induced obese mouse model, we found that basal plasma norepinephrine, the principal catecholamine as an index of SNS activity, was persistently elevated and highly correlated with plasma leptin concentration during obesity development. Targeting the adrenergic overdrive from this chronic norepinephrine excess in HFD-induced obesity with carvedilol, a third-generation beta-blocker with vasodilating action, blunted the HFD-induced hepatic glucose over-production by suppressing the induction of gluconeogenic enzymes, and enhanced the muscular insulin signaling pathway. Furthermore, carvedilol treatment in HFD-induced obese mice decreased the enlargement of white adipose tissue and improved the glucose tolerance and insulin sensitivity without affecting body weight and blood glucose levels. Our results suggested that catecholamine excess in obesity might directly link to the hyperleptinemic condition and the therapeutic targeting of chronic adrenergic overdrive in obesity with carvedilol might be helpful to attenuate obesity-related metabolic disorders.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Carvedilol/administração & dosagem , Insulina/metabolismo , Norepinefrina/metabolismo , Obesidade/tratamento farmacológico , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Administração Oral , Adrenérgicos , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Leptina/sangue , Leptina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Norepinefrina/sangue , Obesidade/etiologia , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Metabolism ; 91: 43-52, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30500562

RESUMO

PURPOSE: While leptin has been associated with various psycho-physiological functions, the molecular network in leptin-mediated mood regulation remains elusive. METHODS: Anxiolytic behaviors and tyrosine hydroxylase (TH) levels were examined after leptin administration. Functional roles of STAT3 and FoxO1 in regulation of TH expression were investigated using in vivo and in vitro systems. A series of animal behavioral tests using dopaminergic neuron-specific FoxO1 KO (FoxO1 KODAT) were performed and investigated the roles of FoxO1 in regulation of mood behaviors. RESULTS: Here, we show that administration of leptin induces anxiolytic-like phenotype through the activation of signal transducer and activator of transcription 3 (STAT3) and the inhibition of forkhead box protein O1 (FoxO1) in dopaminergic (DA) neurons of the midbrain. Specifically, STAT3 and FoxO1 directly bind to and exert opposing effects on tyrosine hydroxylase (TH) expression, where STAT3 acts as an enhancer and FoxO1 acts as a prominent repressor. Accordingly, suppression of the prominent suppressor FoxO1 by leptin strongly increased TH expression. Furthermore, our previous results showed that specific deletion of FoxO1 in DA neurons (FoxO1 KODAT) led to a profound elevation of TH activity and dopamine contents. Finally, FoxO1 KODAT mice exhibited enhanced leptin sensitivity as well as displayed reduced anxiety- and depression-like behaviors. CONCLUSIONS: This work establishes a novel molecular mechanism of mood behavior regulation by leptin and suggests FoxO1 suppression by leptin might be a key for leptin-induced behavioral manifestation in DA neurons.


Assuntos
Afeto/efeitos dos fármacos , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/metabolismo , Leptina/farmacologia , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Ansiedade/genética , Ansiedade/psicologia , Depressão/metabolismo , Depressão/psicologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Masculino , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Fator de Transcrição STAT3/metabolismo
17.
Sci Rep ; 8(1): 5025, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567944

RESUMO

Development of metabolic syndrome is associated with hyperactivity of the HPA axis characterized by elevated levels of circulating adrenal hormones including cortisol and aldosterone. However, the molecular mechanism leading to the dysregulation of the HPA axis is not well elucidated. In this study, we found that insulin regulates adrenal steroidogenesis by increasing the expression and activity of steroidogenic factor 1 (SF-1) both in vitro and in vivo and this insulin effect was partly through inhibition of FoxO1. Specifically, insulin increased the protein and RNA levels of SF-1 and steroidogenic target genes. Further, adrenal SF-1 expression was significantly increased by hyperactivation of insulin signaling in mice. Together with the elevated SF-1 expression in adrenal glands, hyperactivation of insulin signaling led to increased aldosterone and corticosterone levels. On the other hand, suppressing the insulin signaling using streptozotocin markedly reduced the expression of adrenal SF-1 in mice. In addition, overexpression of FoxO1 significantly suppressed SF-1 and its steroidogenic target genes implying that the positive effect of insulin on SF-1 activity might be through suppression of FoxO1 in the adrenal gland. Taken together, these results indicate that insulin regulates adrenal steroidogenesis through coordinated control of SF-1 and FoxO1.


Assuntos
Córtex Suprarrenal/metabolismo , Aldosterona/biossíntese , Corticosterona/biossíntese , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1/metabolismo , Insulina/metabolismo , Fator Esteroidogênico 1/metabolismo , Córtex Suprarrenal/citologia , Aldosterona/sangue , Animais , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/fisiologia , Linhagem Celular Tumoral , Corticosterona/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , RNA Interferente Pequeno/metabolismo , Fator Esteroidogênico 1/genética , Estreptozocina/toxicidade
18.
Exp Mol Med ; 50(2): e437, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29391540

RESUMO

4-hydroxy-3-methoxycinnamic acid (ferulic acid, FA) is known to have numerous beneficial health effects, including anti-obesity and anti-hyperglycemic properties. However, the molecular networks that modulate the beneficial FA-induced metabolic effects have not been well elucidated. In this study, we explored the molecular mechanisms mediating the beneficial metabolic effects of FA. In mice, FA protected against high-fat diet-induced weight gain, reduced food intake and exhibited an overall improved metabolic phenotype. The food intake suppression by FA was accompanied by a specific reduction in hypothalamic orexigenic neuropeptides, including agouti-related protein and neuropeptide Y, with no significant changes in the anorexigenic peptides pro-opiomelanocortin and cocaine and amphetamine-regulated transcript. FA treatment also inhibited fat accumulation in the liver and white adipose tissue and suppressed the expression of gluconeogenic genes, including phosphoenolpyruvate carboxylase and glucose-6-phosphatase. Furthermore, we show that FA phosphorylated and inactivated the transcription factor FoxO1, which positively regulates the expression of gluconeogenic and orexigenic genes, providing evidence that FA might exert its beneficial metabolic effects through inhibition of FoxO1 function in the periphery and the hypothalamus.


Assuntos
Ácidos Cumáricos/farmacologia , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neuropeptídeos/metabolismo , Animais , Biomarcadores , Linhagem Celular , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Fosforilação
19.
PLoS One ; 11(9): e0162352, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598259

RESUMO

The ventromedial nucleus of the hypothalamus (VMH) is important for the regulation of whole body energy homeostasis and lesions in the VMH are reported to result in massive weight gain. The nuclear receptor steroidogenic factor 1 (SF-1) is a known VMH marker as it is exclusively expressed in the VMH region of the brain. SF-1 plays a critical role not only in the development of VMH but also in its physiological functions. In this study, we generated prenatal VMH-specific SF-1 KO mice and investigated age-dependent energy homeostasis regulation by SF-1. Deletion of SF-1 in the VMH resulted in dysregulated insulin and leptin homeostasis and late onset obesity due to increased food intake under normal chow and high fat diet conditions. In addition, SF-1 ablation was accompanied by a marked reduction in energy expenditure and physical activity and this effect was significantly pronounced in the aged mice. Taken together, our data indicates that SF-1 is a key component in the VMH-mediated regulation of energy homeostasis and implies that SF-1 plays a protective role against metabolic stressors including aging and high fat diet.


Assuntos
Envelhecimento/genética , Insulina/genética , Leptina/genética , Obesidade/genética , Fator Esteroidogênico 1/genética , Núcleo Hipotalâmico Ventromedial/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/genética , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Homeostase/fisiologia , Insulina/sangue , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Consumo de Oxigênio/fisiologia , Transdução de Sinais , Fator Esteroidogênico 1/deficiência , Núcleo Hipotalâmico Ventromedial/fisiopatologia
20.
Sci Rep ; 6: 19143, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26750456

RESUMO

Steroidogenic factor 1 (SF-1) is a transcription factor expressed in the ventral medial nucleus of the hypothalamus that regulates energy homeostasis. However, the molecular mechanisms of SF-1 in the control of energy balance are largely unknown. Here, we show that nutritional conditions, such as the presence or absence of serum, affect SF-1 action. Serum starvation significantly decreased hypothalamic SF-1 levels by promoting ubiquitin-dependent degradation, and sumoylation was required for this process. SF-1 transcriptional activity was also differentially regulated by nutritional status. Under normal conditions, the transcriptional activity of hypothalamic SF-1 was activated by SUMO, but this was attenuated during starvation. Taken together, these results indicate that sumoylation and ubiquitination play crucial roles in the regulation of SF-1 function and that these effects are dependent on nutritional conditions, further supporting the importance of SF-1 in the control of energy homeostasis.


Assuntos
Regulação da Expressão Gênica , Fator Esteroidogênico 1/metabolismo , Sumoilação , Ativação Transcricional , Ubiquitinação , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/metabolismo , Insulina/farmacologia , Modelos Biológicos , Estabilidade Proteica , Proteólise , Transdução de Sinais , Sumoilação/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa