Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 22(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535468

RESUMO

The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated ß-galactosidase (SA-ß-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.


Assuntos
Corydalis , Humanos , Autofagia , Pele , Envelhecimento , Extratos Vegetais , Ubiquitina-Proteína Ligases
2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256144

RESUMO

As the global population ages, the prevalence of Parkinson's disease (PD) is steadily on the rise. PD demonstrates chronic and progressive characteristics, and many cases can transition into dementia. This increases societal and economic burdens, emphasizing the need to find effective treatments. Among the widely recognized causes of PD is the abnormal accumulation of proteins, and autophagy dysfunction accelerates this accumulation. The resultant Lewy bodies are also commonly found in Alzheimer's disease patients, suggesting an increased potential for the onset of dementia. Additionally, the production of free radicals due to mitochondrial dysfunction contributes to neuronal damage and degeneration. The activation of astrocytes and the M1 phenotype of microglia promote damage to dopamine neurons. The drugs currently used for PD only delay the clinical progression and exacerbation of the disease without targeting its root cause, and come with various side effects. Thus, there is a demand for treatments with fewer side effects, with much potential offered by natural products. In this study, we reviewed a total of 14 articles related to herbal medicines and natural products and investigated their relevance to possible PD treatment. The results showed that the reviewed herbal medicines and natural products are effective against lysosomal disorder, mitochondrial dysfunction, and inflammation, key mechanisms underlying PD. Therefore, natural products and herbal medicines can reduce neurotoxicity and might improve both motor and non-motor symptoms associated with PD. Furthermore, these products, with their multi-target effects, enhance bioavailability, inhibit antibiotic resistance, and might additionally eliminate side effects, making them good alternative therapies for PD treatment.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Doenças Mitocondriais , Doença de Parkinson , Plantas Medicinais , Humanos , Doença de Parkinson/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Extratos Vegetais
3.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240173

RESUMO

Alzheimer's disease and Parkinson's disease are the two most common neurodegenerative diseases in the world, and their incidence rates are increasing as our society ages. This creates a significant social and economic burden. Although the exact cause and treatment methods for these diseases are not yet known, research suggests that Alzheimer's disease is caused by amyloid precursor protein, while α-synuclein acts as a causative agent in Parkinson's disease. The accumulation of abnormal proteins such as these can lead to symptoms such as loss of protein homeostasis, mitochondrial dysfunction, and neuroinflammation, which ultimately result in the death of nerve cells and the progression of neurodegenerative diseases. The medications currently available for these diseases only delay their progression and have many adverse effects, which has led to increased interest in developing natural products with fewer adverse effects. In this study, we selected specific keywords and thesis content to investigate natural products that are effective in treating Alzheimer's and Parkinson's diseases. We reviewed 16 papers on natural products and found that they showed promising mechanisms of action such as antioxidant, anti-inflammatory, and mitochondrial function improvement. Other natural products with similar properties could also be considered potential treatments for neurodegenerative diseases, and they can be consumed as part of a healthy diet rather than as medicine.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Precursor de Proteína beta-Amiloide
4.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557811

RESUMO

Verbenalin, among the major constituents of Verbena officinalis, has been reported to exhibit sleep-promoting and antioxidant activities. This study demonstrates the effects of verbenalin on amyloid-beta (Aß) peptide generation in Swedish mutant amyloid precursor protein (APP)-overexpressing Neuro2a cells (SweAPP/N2a) and in Alzheimer's disease (AD) animal models. We further performed molecular biological analyses of these in vitro and in vivo models of AD. The effects of verbenalin were assessed based on the expression of factors related to Aß peptide production using Western blotting, enzyme-linked immunosorbent assay, and immunohistochemistry (IHC). The intracellular expression and release of APP protein were both decreased by verbenalin treatment in SweAPP/N2a cells. Thus, the production of Aß peptides was decreased. Compared to those in AD transgenic (Tg) mice, IHC revealed that verbenalin-treated animals showed decreased Aß and tau expression levels in the hippocampus. In addition, verbenalin restored the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of AD animal models. These findings suggest that verbenalin may decrease Aß formation both in vitro and in vivo. Verbenalin may also help improve the pathological hallmarks of AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Encéfalo/metabolismo
5.
J Toxicol Environ Health A ; 84(22): 922-931, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34304725

RESUMO

Atopic dermatitis is a chronic inflammatory skin disease, of which incidence is closely related to exposure to environmental pollutants and allergens. Thymic stromal lymphopoietin (TSLP) plays an important role in the early stages of atopic dermatitis development by inducing Th2 immune responses. In addition, TSLP regulates activation of group 2 innate lymphoid cells (ILC2), promoting the pathogenesis of atopic dermatitis. The aim of this study was to investigate whether celastrol alleviated atopic dermatitis symptoms by regulating TSLP expression and ILC2 stimulation. Celastrol suppressed TSLP production in mouse keratinocyte cells by inhibiting NF-ĸB activation. Topical application of celastrol significantly improved atopic dermatitis symptoms induced by house dust mite (HDM) in NC/Nga mice as determined by dermatitis score and histological assessment. Celastrol decreased the levels of TSLP in atopic dermatitis skin lesions of HDM-stimulated NC/Nga mice. Celastrol reduced levels of Th2 cytokines including IL-4, IL-5, and IL-13 in atopic dermatitis skin lesions of NC/Nga mice. Further, celastrol significantly reduced ILC2 population in atopic dermatitis skin lesions of NC/Nga mice. These results indicate that topical application of celastrol improved atopic dermatitis symptoms by lowering TSLP levels and concomitant immune responses. Data demonstrated that reduced TSLP levels and associated lower number of ILC2 cells alleviate atopic dermatitis symptoms induced by house dust mite.


Assuntos
Citocinas/imunologia , Dermatite Atópica/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Triterpenos Pentacíclicos/administração & dosagem , Alérgenos/efeitos adversos , Alérgenos/imunologia , Animais , Linhagem Celular Tumoral , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Imunidade Inata/efeitos dos fármacos , Inflamação , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Linfócitos/imunologia , Camundongos , NF-kappa B/imunologia , Triterpenos Pentacíclicos/farmacologia , Pyroglyphidae/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Linfopoietina do Estroma do Timo
6.
Int J Mol Sci ; 22(3)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525754

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases. Many studies have demonstrated that the release of NLRP3 inflammasome-mediated proinflammatory cytokines by the excessive activation of microglia is associated with the pathogenesis of AD and PD and suggested that the NLRP3 inflammasome plays an important role in AD and PD development. In both diseases, various stimuli, such as Aß and α-synuclein, accelerate the formation of the NLRP3 inflammasome in microglia and induce pyroptosis through the expression of interleukin (IL)-1ß, caspase-1, etc., where neuroinflammation contributes to gradual progression and deterioration. However, despite intensive research, the exact function and regulation of the NLRP3 inflammasome has not yet been clearly identified. Moreover, there have not yet been any experiments of clinical use, although many studies have recently been conducted to improve treatment of inflammatory diseases using various inhibitors for NLRP3 inflammasome pathways. However, recent studies have reported that various natural products show improvement effects in the in vivo models of AD and PD through the regulation of NLRP3 inflammasome assembly. Therefore, the present review provides an overview of natural extraction studies aimed at the prevention or treatment of NLRP3 inflammasome-mediated neurological disorders. It is suggested that the discovery and development of these various natural products could be a potential strategy for NLRP3 inflammasome-mediated AD and PD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Inflamassomos/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Produtos Biológicos/farmacologia , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Molecules ; 26(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670601

RESUMO

Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1ß production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1ß and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.


Assuntos
Gota/tratamento farmacológico , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Iridoides/uso terapêutico , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Administração Oral , Animais , Células Cultivadas , DNA Mitocondrial/biossíntese , Modelos Animais de Doenças , Gota/complicações , Inflamação/complicações , Iridoides/química , Iridoides/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Ácido Úrico
8.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326002

RESUMO

Atopic dermatitis (AD) is a common and relapsing skin disease that is characterized by skin barrier dysfunction, inflammation, and chronic pruritus. While AD was previously thought to occur primarily in children, increasing evidence suggests that AD is more common in adults than previously assumed. Accumulating evidence from experimental, genetic, and clinical studies indicates that AD expression is a precondition for the later development of other atopic diseases, such as asthma, food allergies, and allergic rhinitis. Although the exact mechanisms of the disease pathogenesis remain unclear, it is evident that both cutaneous barrier dysfunction and immune dysregulation are critical etiologies of AD pathology. This review explores recent findings on AD and the possible underlying mechanisms involved in its pathogenesis, which is characterized by dysregulation of immunological and skin barrier integrity and function, supporting the idea that AD is a systemic disease. These findings provide further insights for therapeutic developments aiming to repair the skin barrier and decrease inflammation.


Assuntos
Dermatite Atópica/etiologia , Dermatite Atópica/metabolismo , Suscetibilidade a Doenças , Pele/imunologia , Pele/metabolismo , Alérgenos , Animais , Biomarcadores , Citocinas/metabolismo , Dermatite Atópica/patologia , Dermatite Atópica/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Homeostase , Humanos , Imunidade , Imunomodulação , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Transdução de Sinais , Pele/patologia , Receptores Toll-Like/metabolismo , Linfopoietina do Estroma do Timo
9.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316419

RESUMO

Non-alcoholic steatohepatitis (NASH), a type of non-alcoholic fatty liver disease, is characterized as steatosis and inflammation in the liver. NLRP3 inflammasome activation is associated with NASH pathology. We hypothesized that suppressing the NLRP3 inflammasome could be effective in preventing NASH. We searched substances that could inhibit the activation of the NLRP3 inflammasome and identified sweroside as an NLRP3 inhibitor. We investigated whether sweroside can be applied to prevent the pathological symptoms associated with NASH in a methionine-choline-deficient (MCD) diet-induced NASH mouse model. The activation of the NLRP3 inflammasome was determined by detecting the production of caspase-1 and IL-1ß from pro-caspase-1 and pro-IL-1ß in primary mouse macrophages and mouse liver. In a NASH model, mice were fed an MCD diet for two weeks with daily intraperitoneal injections of sweroside. Sweroside effectively inhibited NLRP3 inflammasome activation in primary macrophages as shown by a decrease in IL-1ß and caspase-1 production. In a MCD diet-induced NASH mouse model, intraperitoneal injection of sweroside significantly reduced serum aspartate transaminase and alanine transaminase levels, hepatic immune cell infiltration, hepatic triglyceride accumulation, and liver fibrosis. The improvement of NASH symptoms by sweroside was accompanied with its inhibitory effects on the hepatic NLRP3 inflammasome as hepatic IL-1ß and caspase-1 were decreased. Furthermore, sweroside blocked de novo synthesis of mitochondrial DNA in the liver, contributing to suppression of the NLRP3 inflammasome. These results suggest that targeting the NLRP3 inflammasome with sweroside could be beneficially employed to improve NASH symptoms.


Assuntos
Caspase 1/metabolismo , Dieta/efeitos adversos , Interleucina-1beta/metabolismo , Glucosídeos Iridoides/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Colina/metabolismo , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Injeções Intraperitoneais , Glucosídeos Iridoides/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metionina/deficiência , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Resultado do Tratamento
10.
Molecules ; 24(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174271

RESUMO

Gout is a chronic inflammatory disease evoked by the deposition of monosodium urate (MSU) crystals in joint tissues. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the gout inflammatory symptoms induced by MSU crystals. We investigated whether epigallocatechin-3-gallate (EGCG) suppresses the activation of the NLRP3 inflammasome, thereby effectively preventing gouty inflammation. EGCG blocked MSU crystal-induced production of caspase-1(p10) and interleukin-1ß in primary mouse macrophages, indicating its suppressive effect on the NLRP3 inflammasome. In an acute gout mouse model, oral administration of EGCG to mice effectively alleviated gout inflammatory symptoms in mouse foot tissue injected with MSU crystals. The in vivo suppressive effects of EGCG correlated well with the suppression of the NLRP3 inflammasome in mouse foot tissue. EGCG inhibited the de novo synthesis of mitochondrial DNA as well as the production of reactive oxygen species in primary mouse macrophages, contributing to the suppression of the NLRP3 inflammasome. These results show that EGCG suppresses the activation of the NLRP3 inflammasome in macrophages via the blockade of mitochondrial DNA synthesis, contributing to the prevention of gouty inflammation. The inhibitory effects of EGCG on the NLRP3 inflammasome make EGCG a promising therapeutic option for NLRP3-dependent diseases such as gout.


Assuntos
Catequina/análogos & derivados , Gota/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Animais , Caspase 1/genética , Catequina/farmacologia , DNA Mitocondrial/biossíntese , DNA Mitocondrial/efeitos dos fármacos , Modelos Animais de Doenças , Gota/genética , Gota/patologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/genética , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico/toxicidade
11.
Biochem Biophys Res Commun ; 503(3): 2117-2123, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093114

RESUMO

The main function of brown adipose tissue is to dissipate surplus caloric intake into heat energy by thermogenesis, increasing energy expenditure. Inducible brown adipocytes can develop within white adipose tissue (WAT) through a process referred to as browning. Browning of white fat represents a promising strategy for treatment of obesity and the related complications. We investigated whether Glycyrrhiza uralensis and its ingredients modulated adipogenesis through adipocyte browning using 3T3-L1 adipocytes and a high-fat diet (HFD)-induced obesity mice model. Amongst extracts and fractions of G. uralensis, methyl dichloride (MeCl2) fraction was the most effective to induce expression of uncoupling protein 1 (UCP1), a fat browning marker, in 3T3-L1 adipocytes. Ingredients of G. uralensis such as licochalcone A (LicoA), isoliquiritigenin, and liquiritigenin induced UCP1 expression in 3T3-L1 adipocytes. After inducing obesity in mice by 6-week HFD, MeCl2 fraction of G. uralensis or LicoA was intraperitoneally administered for additional 19 days. MeCl2 fraction or LicoA significantly reduced body weight gain and inguinal fat pad weights. Furthermore, MeCl2 fraction or LicoA improved metabolic disorders induced by HFD as the treatments decreased serum levels of glucose and cholesterol, and blocked insulin resistance. MeCl2 fraction or LicoA enhanced expression of brown fat markers such as UCP1, PRDM16, and PGC-1α and increased brown fat phenotype population in inguinal WAT of HFD-fed mice. Our results demonstrate that G. uralensis and LicoA are effective to reduce obesity and to recover metabolic homeostasis by inducing the brown fat phenotype.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Chalconas/farmacologia , Glycyrrhiza uralensis/química , Doenças Metabólicas/tratamento farmacológico , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos Marrons/metabolismo , Animais , Chalconas/administração & dosagem , Chalconas/química , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Injeções Intraperitoneais , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/metabolismo , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Raízes de Plantas/química
12.
Rheumatology (Oxford) ; 57(4): 727-736, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29340626

RESUMO

Objective: The aetiology of gout is closely linked to the deposition of monosodium uric acid (MSU) crystals and the consequent activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we investigated whether oral administration of an NLRP3 inhibitor would be effective to attenuate the symptoms of gout. Methods: The effects of oral administration with sulforaphane (SFN) were examined in two mouse models of acute gout induced by injection of MSU crystals into footpads or air pouch. The production of caspase-1 (p10) and IL-1ß was examined by immunoblotting and ELISA as hallmarks of NLRP3 inflammasome activation. Results: Oral administration of SFN attenuated MSU crystal-induced swelling and neutrophil recruitment in a mouse foot acute gout model, correlating with the suppression of the NLRP3 inflammasome activation in foot tissues. Consistently, oral administration of SFN blocked MSU-crystal-induced activation of the NLRP3 inflammasome in a mouse air pouch gout model. SFN suppressed NLRP3 inflammasome activation induced by MSU crystals, adenosine triphosphate and nigericin but not by poly(dA:dT) in primary mouse macrophages, independent of the reactive oxygen species pathway. SFN inhibited ligand-independent activation of the NLRP3 inflammasome, suggesting that SFN may act directly on the NLRP3 inflammasome complex. Conclusion: Oral administration of SFN effectively alleviated acute gouty inflammation by suppression of the NLRP3 inflammasome. Our results provide a novel strategy in which oral treatment with SFN may be beneficial in preventing acute attacks of gout.


Assuntos
Gota/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Isotiocianatos/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Doença Aguda , Administração Oral , Animais , Anticarcinógenos/administração & dosagem , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Gota/metabolismo , Gota/patologia , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfóxidos , Ácido Úrico/toxicidade
13.
Phytother Res ; 32(12): 2551-2559, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30281174

RESUMO

Activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome by Propionibacterium acnes (P. acnes) is critical for inducing inflammation and aggravating the development of acne lesions. We searched for available small-molecule inhibitors of the NLRP3 inflammasome that could be topically administered for the treatment of acne. We found that licochalcone A, a chalconoid isolated from the root of Glycyrrhiza inflate, was an effective inhibitor for P. acnes-induced NLRP3 inflammasome activation. Licochalcone A blocked P. acnes-induced production of caspase-1(p10) and IL-1ß in primary mouse macrophages and human SZ95 sebocytes, indicating the suppression of NLRP3 inflammasome. Licochalcone A suppressed P. acnes-induced ASC speck formation and mitochondrial reactive oxygen species. Topical application of licochalcone A to mouse ear skin attenuated P. acnes-induced skin inflammation as shown by histological assessment, ear thickness measurement, and inflammatory gene expression. Licochalcone A reduced caspase-1 activity and IL-1ß production in mouse ear injected with P. acnes. This study demonstrated that licochalcone A is effective in the control of P. acnes-induced skin inflammation as an efficient inhibitor for NLRP3 inflammasome. Our study provides a new paradigm for the development of anti-acne therapy via targeting NLRP3 inflammasome.


Assuntos
Acne Vulgar/prevenção & controle , Chalconas/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamação/prevenção & controle , Pele/efeitos dos fármacos , Acne Vulgar/microbiologia , Acne Vulgar/patologia , Animais , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Propionibacterium acnes/efeitos dos fármacos , Propionibacterium acnes/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/patologia
14.
Chem Biodivers ; 12(4): 538-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25879499

RESUMO

We investigated the modulation of innate and adaptive immune cell activation by Eucommia ulmoides Oliver extract (EUE) and its ingredient genipin. As an innate immunity indicator, the phagocytic activity of macrophages was determined by measuring engulfed, fluorescently labeled Escherichia coli. As a surrogate marker for the respective activation of cellular and humoral adaptive immunity, concanavalin A (Con A) and lipopolysaccharide (LPS) induction of primary splenocyte proliferation was assayed in in vitro and ex vivo systems. EUE and genipin suppressed the proliferation of primary splenic lymphocytes induced by Con A or LPS, but not macrophage phagocytosis. Oral administration of EUE and genipin to mice decreased splenic lymphocyte proliferation induced by Con A or LPS. These results revealed that E. ulmoides and genipin suppressed cellular and humoral adaptive immunity, and they suggest that E. ulmoides and genipin are promising candidates for immunosuppressive drugs that target diseases that involve excessive activation of adaptive immunity.


Assuntos
Eucommiaceae/química , Imunossupressores/farmacologia , Iridoides/farmacologia , Linfócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Administração Oral , Animais , Proliferação de Células/efeitos dos fármacos , Concanavalina A/farmacologia , Iridoides/administração & dosagem , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Fagocitose/efeitos dos fármacos , Extratos Vegetais/química , Baço/citologia , Baço/efeitos dos fármacos
15.
Immunopharmacol Immunotoxicol ; 36(1): 70-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24328676

RESUMO

The bark of Sorbus commixta has been used in Asian traditional medicine for treatment of cough, asthma, bronchial disorders, gastritis and dropsy. However, the anti-inflammatory effect of ß-sitosteryl-3-O-ß-glucopyranoside, a major compound of the bark of S. commixta, is poorly understood. In this study, we investigated the anti-inflammatory effect and the underlying molecular mechanisms of ß-sitosteryl-3-O-ß-glucopyranoside in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Prostaglandin E2 (PGE2) and cytokines released from cells were measured using EIA assay kit. The expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, Tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) was measured by real-time polymerase chain reaction (RT-PCR) and/or Western blot analysis. ß-sitosteryl-3-O-ß-glucopyranoside inhibited the production of nitric oxide (NO) and PGE2 along with the expression of iNOS and COX-2 in LPS-stimulated RAW264.7 cells. In addition, ß-sitosteryl-3-O-ß-glucopyranoside reduced the release of pro-inflammatory cytokines, such as TNF-α, IL-1ß and IL-6. Moreover, ß-sitosteryl-3-O-ß-glucopyranoside inhibited the NF-κB activation induced by LPS, which was associated with the abrogation of IκBα degradation and subsequent decreases in nuclear p65 levels. The result suggested that the ß-sitosteryl-3-O-ß-glucopyranoside inhibited NO and pro-inflammatory productions by down-regulating the gene expression of pro-inflammatory mediators via the negative regulation of the NF-кB pathway in LPS-stimulated RAW 264.7 cells.


Assuntos
Mediadores da Inflamação/imunologia , Casca de Planta/química , Sitosteroides/farmacologia , Sorbus/química , Animais , Linhagem Celular , Ciclo-Oxigenase 2/imunologia , Citocinas/imunologia , Lipopolissacarídeos/toxicidade , Camundongos , Óxido Nítrico/imunologia , Sitosteroides/química
16.
J Pharmacopuncture ; 27(2): 59-69, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38948310

RESUMO

This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1ß) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-ß) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

17.
BMC Complement Altern Med ; 13: 31, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23410148

RESUMO

BACKGROUND: Prunus yedoensis Matsum. is used as traditional medicine-'Yaeng-Pi' or 'Hua-Pi'-in Japan and Korea. However, no studies have examined the pharmacological activities of the P. yedoensis bark. Only the antioxidant and antiviral activities of P. yedoensis fruit and the anti-hyperglycaemic effect of P. yedoensis leaf have been investigated. While studying the antihypertensive effects of several medicinal plants, we found that a methanol extract of P. yedoensis bark (MEPY) had distinct vasorelaxant effects on rat aortic rings. METHODS: The aortic rings were removed from Sprague-Dawley rats and suspended in organ chambers containing 10 ml Krebs-Henseleit solution. The aortic rings were placed between 2 tungsten stirrups and connected to an isometric force transducer. Changes in tension were recorded via isometric transducers connected to a data acquisition system. RESULTS: MEPY relaxed the contraction induced by phenylephrine (PE) both in endothelium-intact and endothelium-denuded aortic rings concentration dependently. However, the vasorelaxant effects of MEPY on endothelium-denuded aortic rings were lower than endothelium-intact aortic rings. The vasorelaxant effects of MEPY on endothelium-intact aortic rings were reduced by pre-treatment with L-NAME, methylene blue, or ODQ. However, pre-treatment with indomethacin, atropine, glibenclamide, tetraethylammonium, or 4-aminopyridine had no affection. In addition, MEPY inhibited the contraction induced by extracellular Ca(2+) in endothelium-denuded rat thoracic aorta rings pre-contracted by PE (1 µM) or KCl (60 mM) in Ca(2+)-free solution. CONCLUSIONS: Our results suggest that MEPY exerts its vasorelaxant effects via the activation of NO formation by means of L-Arg and NO-cGMP pathways and via the blockage of extracellular Ca(2+) channels.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Endotélio Vascular , Extratos Vegetais/farmacologia , Prunus , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Aorta/efeitos dos fármacos , Arginina/metabolismo , Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , GMP Cíclico/metabolismo , Endotélio Vascular/efeitos dos fármacos , Azul de Metileno , NG-Nitroarginina Metil Éster , Óxido Nítrico/biossíntese , Fenilefrina , Casca de Planta , Ratos , Ratos Sprague-Dawley
18.
BMC Complement Altern Med ; 13: 92, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631356

RESUMO

BACKGROUND: Prunus yedoensis (PY) is a traditional anti-allergy and anti-inflammatory herb medicine used in South Korea. However, until date, little is known regarding its mechanism of action. METHODS: In order to elucidate the mechanism of anti-inflammatory effect of PY, the constituents of PY were analysed by high performance liquid chromatography (HPLC), and nitric oxide (NO) and prostaglandin E2 (PGE2) production were measured enzyme-linked immuno sorbent assay (ELISA). The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-κB (NF-κB) were also measured by western blotting in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells treated with PY. RESULTS: The results indicate that (50, 100 µg/mL) methanol and ethyl acetate fractionation extracts of PY not only inhibited LPS-mediated NO production and iNOS expression, but also decreased LPS-induced PGE2 production and COX-2 expression. The anti-inflammatory effects of PY were also due to the attenuation of nuclear translocation of NF-κB, as evaluated by the use of anti-p50 on nuclear fractions. LPS-induced nuclear translocation of NF-κB decreased significantly by the methanol extract and ethyl acetate fraction of PY. High performance liquid chromatography (HPLC) analyses revealed that methanol extract and ethyl acetate fraction have similar patterns of retention time and peaks. CONCLUSION: Our results demonstrate that methanol extracts and the ethyl acetate fraction of PY have anti-inflammatory properties, thus emphasizing the potential of PY as a natural health product.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/farmacologia , Prunus , Animais , Anti-Inflamatórios/uso terapêutico , Transporte Biológico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Dinoprostona/metabolismo , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico , República da Coreia
19.
Phytother Res ; 27(9): 1308-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23109264

RESUMO

The present study aimed to investigate the vasorelaxant effect of the methanol extract of Sigesbeckia glabrescens (Makino) Makino (MESG) on rat aortic rings and mechanism of action. MESG inhibited both noradrenaline bitartrate (NA)- and potassium chloride (KCl)-induced contraction of endothelium-intact aortic rings in a concentration-dependent manner. Removal of the endothelium did not influence the effect of MESG on NA-precontracted aortic rings. Pretreatment with MESG (250 µg/mL) inhibited calcium chloride-induced vasocontraction of NA- or KCl-precontracted endothelium-denuded aortic rings. It also relaxed phorbol-12-myristate-13-acetate-induced contraction of aortic rings in a concentration-dependent manner. In addition, Bay K8644 (an L-type calcium channel opener) vasocontracted in MESG pretreated aortic rings. On the other hand, the inositol 1,4,5-triphosphate receptor, the ryanodine receptor, the Rho-kinase inhibitor (Y-27632), a soluble guanylyl cyclase blocker (1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one), and K⁺ channel blockers (glybenclamide, tetraethylammonium, and 4-aminopyridine) did not affect the effect of MESG. These results suggested that the mechanism underlying the vasorelaxant effect of MESG is mediated by endothelium-independent pathways. This specifically refers to blockade of the influx of extracellular Ca²âº via receptor-operative Ca²âº channels and voltage-dependent Ca²âº channels and inhibition of a protein kinase C-mediated cellular pathway.


Assuntos
Aorta Torácica/efeitos dos fármacos , Asteraceae/química , Extratos Vegetais/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Amidas/farmacologia , Animais , Aorta Torácica/fisiologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Endotélio Vascular/fisiologia , Guanilato Ciclase/metabolismo , Técnicas In Vitro , Norepinefrina/farmacologia , Ésteres de Forbol/farmacologia , Canais de Potássio/metabolismo , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Quinases Associadas a rho/metabolismo
20.
Immunopharmacol Immunotoxicol ; 35(1): 151-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23083228

RESUMO

Astragalus membranaceus (AM) is one of the most popular health-promoting herbs in East Asia, and has been used in traditional medicine for more than 2000 years. This study was performed to examine whether AM suppresses atopic dermatitis (AD)-like skin lesions in BALB/c mice. Seven-week-old female BALB/c mice were sensitized with 1-chloro-2,4-dinitrobenzene (DNCB) to induce allergic dermatitis. Skin sections were stained with hematoxylin and eosin (H&E) to assess epidermal and dermal hyperplasia, which were determined by measuring the thicknesses of the epidermis and dermis, respectively. The serum immunoglobulin G (IgE) concentration was quantified by enzyme-linked immunosorbent assay (ELISA). In addition, the levels of interleukins (IL)-4, -5, -6, and -13 and tissue necrosis factor (TNF)-α were measured in mouse serum. Significance was determined by one-way analysis of variance (ANOVA). Topical AM markedly improved the AD skin lesions in DNCB-induced mice. The AD skin lesions were significantly thinner in the AM treatment group compared with untreated controls, and the hyperkeratosis disappeared. Topical treatment of AM also restored nuclear factor-κB (NF-κB) expression. In addition, the serum IgE level was reduced. AM suppressed the expression of Th2 cytokines (IL-4, -5, -6, and -13) and significantly decreased the TNF-α level. AM is effective for treating AD by regulating cytokines. AM may be an alternative or complementary therapeutic option for treating patients with AD. More in-depth studies are necessary to clarify the mechanisms of AM.


Assuntos
Astragalus propinquus/imunologia , Dermatite Atópica/tratamento farmacológico , Administração Cutânea , Animais , Dermatite Atópica/imunologia , Derme/imunologia , Epiderme/imunologia , Feminino , Hiperceratose Epidermolítica/imunologia , Imunoglobulina E/sangue , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/imunologia , Fitoterapia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa