Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(13): e18524, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011666

RESUMO

Clear cell renal cell carcinoma (ccRCC), a prevalent kidney cancer form characterised by its invasiveness and heterogeneity, presents challenges in late-stage prognosis and treatment outcomes. Programmed cell death mechanisms, crucial in eliminating cancer cells, offer substantial insights into malignant tumour diagnosis, treatment and prognosis. This study aims to provide a model based on 15 types of Programmed Cell Death-Related Genes (PCDRGs) for evaluating immune microenvironment and prognosis in ccRCC patients. ccRCC patients from the TCGA and arrayexpress cohorts were grouped based on PCDRGs. A combination model using Lasso and SuperPC was constructed to identify prognostic gene features. The arrayexpress cohort validated the model, confirming its robustness. Immune microenvironment analysis, facilitated by PCDRGs, employed various methods, including CIBERSORT. Drug sensitivity analysis guided clinical treatment decisions. Single-cell data enabled Programmed Cell Death-Related scoring, subsequent pseudo-temporal and cell-cell communication analyses. A PCDRGs signature was established using TCGA-KIRC data. External validation in the arrayexpress cohort underscored the model's superiority over traditional clinical features. Furthermore, our single-cell analysis unveiled the roles of PCDRG-based single-cell subgroups in ccRCC, both in pseudo-temporal progression and intercellular communication. Finally, we performed CCK-8 assay and other experiments to investigate csf2. In conclusion, these findings reveal that csf2 inhibit the growth, infiltration and movement of cells associated with renal clear cell carcinoma. This study introduces a PCDRGs prognostic model benefiting ccRCC patients while shedding light on the pivotal role of programmed cell death genes in shaping the immune microenvironment of ccRCC patients.


Assuntos
Carcinoma de Células Renais , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Aprendizado de Máquina , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Microambiente Tumoral/genética , Prognóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Apoptose/genética , Análise de Célula Única/métodos
2.
J Cell Mol Med ; 28(12): e18403, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031800

RESUMO

Kidney renal clear cell carcinoma (KIRC) pathogenesis intricately involves immune system dynamics, particularly the role of T cells within the tumour microenvironment. Through a multifaceted approach encompassing single-cell RNA sequencing, spatial transcriptome analysis and bulk transcriptome profiling, we systematically explored the contribution of infiltrating T cells to KIRC heterogeneity. Employing high-density weighted gene co-expression network analysis (hdWGCNA), module scoring and machine learning, we identified a distinct signature of infiltrating T cell-associated genes (ITSGs). Spatial transcriptomic data were analysed using robust cell type decomposition (RCTD) to uncover spatial interactions. Further analyses included enrichment assessments, immune infiltration evaluations and drug susceptibility predictions. Experimental validation involved PCR experiments, CCK-8 assays, plate cloning assays, wound-healing assays and Transwell assays. Six subpopulations of infiltrating and proliferating T cells were identified in KIRC, with notable dynamics observed in mid- to late-stage disease progression. Spatial analysis revealed significant correlations between T cells and epithelial cells across varying distances within the tumour microenvironment. The ITSG-based prognostic model demonstrated robust predictive capabilities, implicating these genes in immune modulation and metabolic pathways and offering prognostic insights into drug sensitivity for 12 KIRC treatment agents. Experimental validation underscored the functional relevance of PPIB in KIRC cell proliferation, invasion and migration. Our study comprehensively characterizes infiltrating T-cell heterogeneity in KIRC using single-cell RNA sequencing and spatial transcriptome data. The stable prognostic model based on ITSGs unveils infiltrating T cells' prognostic potential, shedding light on the immune microenvironment and offering avenues for personalized treatment and immunotherapy.


Assuntos
Carcinoma de Células Renais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Análise de Célula Única , Linfócitos T , Transcriptoma , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/imunologia , Neoplasias Renais/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Prognóstico , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Proliferação de Células/genética
3.
Immun Ageing ; 21(1): 38, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877498

RESUMO

Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.

4.
Phytother Res ; 38(2): 970-999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112572

RESUMO

Ulcerative colitis (UC), a chronic and nonspecific inflammatory disease of the intestine, has become a prevalent global health concern. This guideline aims to equip clinicians and caregivers with effective strategies for the treatment and management of adult UC patients using traditional Chinese medicine (TCM). The guideline systematically evaluated contemporary evidence through the Grading of Recommendations Assessment, Development, and Evaluation framework. Additionally, it incorporated insights from ancient Chinese medical sources, employing the evidence grading method found in traditional TCM literature. The development process involved collaboration with multidisciplinary experts and included input from patients with UC. The guideline, based on a comprehensive review of available evidence, present 40 recommendations. They offer a condensed overview of TCM's role in understanding the pathogenesis, diagnosis, and treatment of UC, along with an assessment of the efficacy of various TCM-based treatments. TCM exhibits promising outcomes in the treatment of UC. However, to establish its efficacy conclusively, further high-quality clinical studies on TCM for UC are essential.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Adulto , Humanos , Medicina Tradicional Chinesa/métodos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico
5.
Environ Toxicol ; 39(6): 3448-3472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450906

RESUMO

BACKGROUND: Globally, breast cancer, with diverse subtypes and prognoses, necessitates tailored therapies for enhanced survival rates. A key focus is glutamine metabolism, governed by select genes. This study explored genes associated with T cells and linked them to glutamine metabolism to construct a prognostic staging index for breast cancer patients for more precise medical treatment. METHODS: Two frameworks, T-cell related genes (TRG) and glutamine metabolism (GM), stratified breast cancer patients. TRG analysis identified key genes via hdWGCNA and machine learning. T-cell communication and spatial transcriptomics emphasized TRG's clinical value. GM was defined using Cox analyses and the Lasso algorithm. Scores categorized patients as TRG_high+GM_high (HH), TRG_high+GM_low (HL), TRG_low+GM_high (LH), or TRG_low+GM_low (LL). Similarities between HL and LH birthed a "Mixed" class and the TRG_GM classifier. This classifier illuminated gene variations, immune profiles, mutations, and drug responses. RESULTS: Utilizing a composite of two distinct criteria, we devised a typification index termed TRG_GM classifier, which exhibited robust prognostic potential for breast cancer patients. Our analysis elucidated distinct immunological attributes across the classifiers. Moreover, by scrutinizing the genetic variations across groups, we illuminated their unique genetic profiles. Insights into drug sensitivity further underscored avenues for tailored therapeutic interventions. CONCLUSION: Utilizing TRG and GM, a robust TRG_GM classifier was developed, integrating clinical indicators to create an accurate predictive diagnostic map. Analysis of enrichment disparities, immune responses, and mutation patterns across different subtypes yields crucial subtype-specific characteristics essential for prognostic assessment, clinical decision-making, and personalized therapies. Further exploration is warranted into multiple fusions between metrics to uncover prognostic presentations across various dimensions.


Assuntos
Neoplasias da Mama , Análise de Célula Única , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Prognóstico , Glutamina , Antineoplásicos/uso terapêutico , Medicina de Precisão , Genômica , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
6.
J Med Virol ; 95(7): e28950, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37465863

RESUMO

With the rapid increase in the incidence of cervical cancer, anal cancer and other cancers, human papillomavirus (HPV) infection has become a growing concern. Persistent infection with high-risk HPV is a major cause of malignant tumors. In addition, microbiota and viruses such as human immunodeficiency virus, herpes simplex virus, and Epstein-Barr virus are closely associated with HPV infection. The limited effectiveness of existing treatments for HPV-associated tumors and the high rates of recurrence and metastasis in patients create an urgent need for novel and effective approaches. In recent years, HPV vaccine coverage has increased and can reduce the incidence of serious adverse events. Overall, this article provides a comprehensive overview of HPV biology, microbiome, and other viral interactions in cancer development, highlighting the need for a more comprehensive approach to cancer prevention and treatment. Current and emerging HPV-related cancer control and treatment strategies are also further explored.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/prevenção & controle , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/epidemiologia , HIV , Vacinas contra Papillomavirus/uso terapêutico , Papillomaviridae
7.
Biol Res ; 56(1): 26, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211600

RESUMO

Previous studies have shown that peripheral nerve injury can lead to abnormal dendritic spine remodeling in spinal dorsal horn neurons. Inhibition of abnormal dendritic spine remodeling can relieve neuropathic pain. Electroacupuncture (EA) has a beneficial effect on the treatment of neuropathic pain, but the specific mechanism remains unclear. Evidence has shown that slit-robo GTPase activating protein 3 (srGAP3) and Rho GTPase (Rac1) play very important roles in dendritic spine remodeling. Here, we used srGAP3 siRNA and Rac1 activator CN04 to confirm the relationship between SrGAP3 and Rac1 and their roles in improving neuropathic pain with EA. Spinal nerve ligation (SNL) was used as the experimental model, and thermal withdrawal latency (TWL), mechanical withdrawal threshold (MWT), Western blotting, immunohistochemistry and Golgi-Cox staining were used to examine changes in behavioral performance, protein expression and dendritic spines. More dendritic spines and higher expression levels of srGAP3 were found in the initial phase of neuropathic pain. During the maintenance phase, dendritic spines were more mature, which was consistent with lower expression levels of srGAP3 and higher expression levels of Rac1-GTP. EA during the maintenance phase reduced the density and maturity of dendritic spines of rats with SNL, increased the levels of srGAP3 and reduced the levels of Rac1-GTP, while srGAP3 siRNA and CN04 reversed the therapeutic effects of EA. These results suggest that dendritic spines have different manifestations in different stages of neuropathic pain and that EA may inhibit the abnormal dendritic spine remodeling by regulating the srGAP3/Rac1 signaling pathway to alleviate neuropathic pain.


Assuntos
Eletroacupuntura , Neuralgia , Animais , Ratos , Espinhas Dendríticas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Proteínas rac1 de Ligação ao GTP/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Nervos Espinhais/metabolismo
8.
Neural Plast ; 2022: 1489841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719137

RESUMO

Background: Electroacupuncture (EA) has benefits for neuropathic pain. However, the underlying mechanisms are still unknown. The current study explores the underlying mechanisms of EA in neuropathic pain of chronic constriction injury (CCI) rats. Material/Methods. Overall, 126 Sprague-Dawley (200-250 g) rats were divided into nine groups randomly: the sham-operated, CCI, CCI+EA, CCI+sham EA, CCI+NS, CCI+AAV-NC, CCI+AAV-miR-206-3p, CCI+EA+NS, and CCI+EA+AAV-miR-206-3p groups. The animals were sacrificed 14 days postsurgery. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests were used to determine differences in neurobehavioral manifestations. qPCR, western blotting, and immunofluorescence (IF) were carried out to detect the expression levels of miR-206-3p, BDNF, BAX/Bcl-2, TNF-α, and IL-6. Nissl staining was measured to observe morphological changes in neurons. Transmission electron microscopy (TEM) was employed to evaluate microscopic changes in dorsal horn synapses. Results: Hyperalgesia was reduced markedly by EA in the CCI model. The expression level of miR-206-3p was elevated, whereas the expression levels of BDNF, BAX/Bcl-2, TNF-α, and IL-6 were decreased in EA-treated CCI rats. However, a miR-206-3p inhibitor partially abrogated the analgesic effect of EA and resulted in poor behavioral performance and the BDNF, BAX/Bcl-2, TNF-α, and IL-6 expression was elevated as well. Conclusions: EA can relieve neuropathic pain by regulating the miR-206-3p/BDNF pathway, thus exerting anti-inflammatory and antiapoptotic effect.


Assuntos
Eletroacupuntura , MicroRNAs , Neuralgia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Interleucina-6 , MicroRNAs/genética , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/terapia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa , Proteína X Associada a bcl-2
9.
Mol Pain ; 17: 1744806921997654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626989

RESUMO

Neuropathic pain is a severe problem that is difficult to treat clinically. Reducing abnormal remodeling of dendritic spines/synapses and increasing the anti-inflammatory effects in the spinal cord dorsal horn are potential methods to treat this disease. Previous studies have reported that electroacupuncture (EA) could increase the pain threshold after peripheral nerve injury. However, the underlying mechanism is unclear. P2X7 receptors (P2X7R) mediate the activation of microglia and participate in the occurrence and development of neuropathic pain. We hypothesized that the effects of EA on relieving pain may be related to the downregulation of the P2X7R. Spinal nerve ligation (SNL) rats were used as a model in this experiment, and 2'(3')-O-(4-benzoyl)benzoyl ATP (BzATP) was used as a P2X7R agonist. We found that EA treatment decreased dendritic spine density, inhibited synaptic reconstruction and reduced inflammatory response, which is consistent with the decrease in P2X7R expression as well as the improved neurobehavioral performance. In contrast to the beneficial effects of EA, BzATP enhanced abnormal remodeling of dendritic spines/synapses and inflammation. Furthermore, the EA-mediated positive effects were reversed by BzATP, which is consistent with the increased P2X7R expression. These findings indicated that EA improves neuropathic pain by reducing abnormal dendritic spine/synaptic reconstruction and inflammation via suppressing P2X7R expression.


Assuntos
Eletroacupuntura , Neuralgia/metabolismo , Neuralgia/terapia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Ligadura , Masculino , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Limiar da Dor/efeitos dos fármacos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/patologia , Nervos Espinhais/fisiopatologia
10.
J Neurosci Res ; 98(6): 1198-1212, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32291804

RESUMO

Microglial polarization to the anti-inflammatory M2 phenotype is essential in resolving neuroinflammation, making it a promising therapeutic strategy for stroke intervention. The actin cytoskeleton is known to be important for the physiological functions of microglia, including migration and phagocytosis. Profilin 1 (PFN1), an actin-binding protein, is involved in the dynamic transformation and reorganization of actin. However, the role of PFN1 in microglial polarization and ischemia/reperfusion injury is unclear. The role of PFN1 on microglial polarization was examined in vitro in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGDR) and in vivo in male mice after transient middle cerebral artery occlusion (MCAO). Knockdown of PFN1 inhibited M1 microglial polarization and promoted M2 microglia polarization 48 hr after OGDR stimulation in BV2 cells and 7 days after MCAO-induced injury in male mice. RhoA/ROCK pathway was involved in the regulation of PFN1 during microglial polarization. Knockdown of PFN1 also significantly attenuated brain infarcts and edema, improved cerebral blood flow and neurological deficits in MCAO-injured mice. Inhibition of PFN1 effectively protected the brain against ischemia/reperfusion injuries by promoting M2 microglial polarization in vitro and in vivo.


Assuntos
Isquemia Encefálica/metabolismo , Polaridade Celular/fisiologia , Microglia/metabolismo , Profilinas/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Isquemia Encefálica/genética , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Profilinas/genética , Transdução de Sinais/fisiologia , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa