Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 122(6): 809-818, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30670843

RESUMO

The major histocompatibility complex (MHC) has several important roles in kin recognition, pathogen resistance and mate selection. Research in fish, birds and mammals has suggested that individuals optimise MHC diversity, and therefore offspring fitness, when choosing mates. In reptiles, however, it is unclear whether female mate choice is based on genome-wide genetic characteristics such as microsatellite DNA loci, particular functional-trait loci (e.g., MHC) or both, and MHC's effects on mate choice remain relatively understudied. Herein, we used 13 microsatellite loci and two MHC class I loci to investigate female mate choice of Chinese alligators (Alligator sinensis) in the semi-natural condition. We also determined correlations between the MHC genotype of breeding males and male reproductive success. We found that MHC-heterozygous males harbour a greater reproductive success, which probably is the reason that these males are more preferred by the females than MHC-homozygous males. Furthermore, the MHC class I amino-acid distance and functional distance of true mating pairs were higher compared with those of randomly sampled pairs. Analysis of microsatellites revealed that, despite mate choice, females did not completely avoid inbreeding. These findings are the first evidence of MHC-associated mate choice in Chinese alligators, suggesting that females may adopt different mating strategies after assessing the MHC characteristics of potential mates.


Assuntos
Jacarés e Crocodilos/genética , Complexo Principal de Histocompatibilidade , Jacarés e Crocodilos/fisiologia , Animais , China , Feminino , Genótipo , Endogamia , Masculino , Repetições de Microssatélites , Reprodução , Comportamento Sexual Animal
2.
Sci Rep ; 7(1): 5549, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717152

RESUMO

Chinese alligator (Alligator sinensis) is an endangered freshwater crocodilian endemic to China, which experienced a severe bottleneck about 30 years ago. In this study, we developed locus-specific primers to investigate the polymorphism of 3 major histocompatibility complex (MHC) loci in 3 Chinese alligator populations, in combination with 6 neutral microsatellite markers as a contrast. We found the genetic trace for the bottleneck effect on the endangered Chinese alligator: the low allelic diversity (2 alleles at each locus), the low nucleotide substitution rate (no more than 0.009) at all sites, the deviation from Hardy-Weinberg Equilibrium/heterozygote deficiency, and the significant Tajima's D values, indicating the MHC class I and class II loci being at different stages of bottleneck. We also obtained 3 pieces of evidence for balancing selection on this severely bottlenecked reptile: an obvious excess of nonsynonymous substitutions over synonymous at the antigen-binding positions, the mean synonymous substitution rate of MHC exons significantly higher than mean nucleotide substitution rate of introns, and the differentiation coefficient F ST of MHC loci significantly lower than that of microsatellite loci. Consequently, we emphasize that the Chinese alligator holds a pretty low adaptive ability and requires scientific conservation strategies to ensure the long-term population development.


Assuntos
Jacarés e Crocodilos/genética , Genética Populacional , Complexo Principal de Histocompatibilidade/genética , Animais , China , Éxons , Frequência do Gene , Heterozigoto , Íntrons , Repetições de Microssatélites , Polimorfismo Genético , Seleção Genética
3.
PeerJ ; 5: e3358, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560107

RESUMO

Fecal samples play an important role in giant panda conservation studies. Optimal preservation conditions and choice of microsatellites for giant panda fecal samples have not been established. In this study, we evaluated the effect of four factors (namely, storage type (ethanol (EtOH), EtOH -20 °C, 2-step storage medium, DMSO/EDTA/Tris/salt buffer (DETs) and frozen at -20 °C), storage time (one, three and six months), fragment length, and repeat motif of microsatellite loci) on the success rate of microsatellite amplification, allelic dropout (ADO) and false allele (FA) rates from giant panda fecal samples. Amplification success and ADO rates differed between the storage types. Freezing was inferior to the other four storage methods based on the lowest average amplification success and the highest ADO rates (P < 0.05). The highest microsatellite amplification success was obtained from either EtOH or the 2-step storage medium at three storage time points. Storage time had a negative effect on the average amplification of microsatellites and samples stored in EtOH and the 2-step storage medium were more stable than the other three storage types. We only detected the effect of repeat motif on ADO and FA rates. The lower ADO and FA rates were obtained from tri- and tetra-nucleotide loci. We suggest that freezing should not be used for giant panda fecal preservation in microsatellite studies, and EtOH and the 2-step storage medium should be chosen on priority for long-term storage. We recommend candidate microsatellite loci with longer repeat motif to ensure greater genotyping success for giant panda fecal studies.

5.
Cell Res ; 23(9): 1091-105, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23917531

RESUMO

Crocodilians are diving reptiles that can hold their breath under water for long periods of time and are crepuscular animals with excellent sensory abilities. They comprise a sister lineage of birds and have no sex chromosome. Here we report the genome sequence of the endangered Chinese alligator (Alligator sinensis) and describe its unique features. The next-generation sequencing generated 314 Gb of raw sequence, yielding a genome size of 2.3 Gb. A total of 22 200 genes were predicted in Alligator sinensis using a de novo, homology- and RNA-based combined model. The genetic basis of long-diving behavior includes duplication of the bicarbonate-binding hemoglobin gene, co-functioning of routine phosphate-binding and special bicarbonate-binding oxygen transport, and positively selected energy metabolism, ammonium bicarbonate excretion and cardiac muscle contraction. Further, we elucidated the robust Alligator sinensis sensory system, including a significantly expanded olfactory receptor repertoire, rapidly evolving nerve-related cellular components and visual perception, and positive selection of the night vision-related opsin and sound detection-associated otopetrin. We also discovered a well-developed immune system with a considerable number of lineage-specific antigen-presentation genes for adaptive immunity as well as expansion of the tripartite motif-containing C-type lectin and butyrophilin genes for innate immunity and expression of antibacterial peptides. Multifluorescence in situ hybridization showed that alligator chromosome 3, which encodes DMRT1, exhibits significant synteny with chicken chromosome Z. Finally, population history analysis indicated population admixture 0.60-1.05 million years ago, when the Qinghai-Tibetan Plateau was uplifted.


Assuntos
Jacarés e Crocodilos/genética , Genoma/genética , Jacarés e Crocodilos/classificação , Jacarés e Crocodilos/metabolismo , Animais , Composição de Bases/genética , Sequência de Bases , Bicarbonatos/metabolismo , Transporte Biológico/genética , Elementos de DNA Transponíveis/genética , Metabolismo Energético/genética , Hemoglobinas/genética , Sistema Imunitário , Contração Muscular/genética , Visão Noturna/genética , Condutos Olfatórios/citologia , Opsinas/genética , Oxigênio/metabolismo , Análise de Sequência de DNA , Processos de Determinação Sexual/genética , Olfato/genética , Fatores de Transcrição/genética , Percepção Visual/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa