Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 71(1): 142-154.e6, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30008318

RESUMO

Nitric oxide (NO) regulates diverse cellular signaling through S-nitrosylation of specific Cys residues of target proteins. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by GSNO reductase (GSNOR), a highly conserved master regulator of NO signaling. However, little is known about how the activity of GSNOR is regulated. Here, we show that S-nitrosylation induces selective autophagy of Arabidopsis GSNOR1 during hypoxia responses. S-nitrosylation of GSNOR1 at Cys-10 induces conformational changes, exposing its AUTOPHAGY-RELATED8 (ATG8)-interacting motif (AIM) accessible by autophagy machinery. Upon binding by ATG8, GSNOR1 is recruited into the autophagosome and degraded in an AIM-dependent manner. Physiologically, the S-nitrosylation-induced selective autophagy of GSNOR1 is relevant to hypoxia responses. Our discovery reveals a unique mechanism by which S-nitrosylation mediates selective autophagy of GSNOR1, thereby establishing a molecular link between NO signaling and autophagy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Autofagia , Glutationa Redutase/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Hipóxia Celular , Glutationa Redutase/genética
2.
Mol Cell ; 67(4): 702-710.e4, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28757206

RESUMO

Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5C125S/prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Óxido Nítrico/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cisteína , Regulação da Expressão Gênica de Plantas , Metilação , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteômica/métodos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais
3.
Genome Res ; 31(7): 1150-1158, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34155038

RESUMO

Protein-truncating variants (PTVs) have important impacts on phenotype diversity and disease. However, their population genetics characteristics in more globally diverse populations are not well defined. Here, we describe patterns of PTVs in 1320 genes sequenced in 10,539 healthy controls and 9434 patients with psoriasis, all of Han Chinese ancestry. We identify 8720 PTVs, of which 77% are novel, and estimate 88% of all PTVs are deleterious and subject to purifying selection. Furthermore, we show that individuals with psoriasis have a significantly higher burden of PTVs compared to controls (P = 0.02). Finally, we identified 18 PTVs in 14 genes with unusually high levels of population differentiation, consistent with the action of local adaptation. Our study provides insights into patterns and consequences of PTVs.

4.
Semin Cancer Biol ; 68: 105-122, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883910

RESUMO

The ubiquitin-proteasome system (UPS) plays a central role in the degradation of cellular proteins. Targeting protein degradation has been validated as an effective strategy for cancer therapy since 2003. Several components of the UPS have been validated as potential anticancer targets, including 20S proteasomes, 19S proteasome-associated deubiquitinases (DUBs) and ubiquitin ligases (E3s). 20S proteasome inhibitors (such as bortezomib/BTZ and carfilzomib/CFZ) have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of multiple myeloma (MM) and some other liquid tumors. Although survival of MM patients has been improved by the introduction of BTZ-based therapies, these clinical 20S proteasome inhibitors have several limitations, including emergence of resistance in MM patients, neuro-toxicities, and little efficacy in solid tumors. One of strategies to improve the current status of cancer treatment is to repurpose old drugs with UPS-inhibitory properties as new anticancer agents. Old drug reposition represents an attractive drug discovery approach compared to the traditional de novo drug discovery process which is time-consuming and costly. In this review, we summarize status of repurposed inhibitors of various UPS components, including 20S proteasomes, 19S-associated DUBs, and ubiquitin ligase E3s. The original and new mechanisms of action, molecular targets, and potential anticancer activities of these repurposed UPS inhibitors are reviewed, and their new uses including combinational therapies for cancer treatment are discussed.


Assuntos
Antineoplásicos/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Animais , Humanos , Ubiquitina/metabolismo
5.
Biochem Biophys Res Commun ; 509(2): 348-353, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30585151

RESUMO

The E3 ubiquitin (Ub) ligase gp78 plays an important role in endoplasmic reticulum (ER)-associated degradation (ERAD) and regulation of lipid biogenesis. Although a variety of substrates of gp78 have been described, the regulation of the degradation of gp78 itself remains poorly understood. To address this problem, we used co-immunoprecipitation-coupled liquid chromatography-tandem mass spectrometry (Co-IP/LC-MS/MS) to identify novel proteins interacting with gp78. One of the proteins identified in this study is the deubiquitylating (DUB) enzyme USP34 (Ub-specific protease 34). We demonstrate that knockdown of USP34 facilitates proteasomal degradation of gp78 and consequently impairs the function of gp78 in regulating lipid droplet formation. This study unveils a previously unknown function of USP34 in regulating the metabolic stability of gp78 and adds to our understanding of the relevance of partnering of DUBs and E3s in regulation of protein ubiquitylation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Hepatócitos/metabolismo , Receptores do Fator Autócrino de Motilidade/genética , Proteases Específicas de Ubiquitina/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Células HEK293 , Hepatócitos/citologia , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Transdução de Sinais , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
6.
Small ; 15(41): e1903596, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31441213

RESUMO

Elemental tantalum is a well-known biomedical metal in clinics due to its extremely high biocompatibility, which is superior to that of other biomedical metallic materials. Hence, it is of significance to expand the scope of biomedical applications of tantalum. Herein, it is reported that tantalum nanoparticles (Ta NPs), upon surface modification with polyethylene glycol (PEG) molecules via a silane-coupling approach, are employed as a metallic photoacoustic (PA) contrast agent for multiwavelength imaging of tumors. By virtue of the broad optical absorbance from the visible to near-infrared region and high photothermal conversion efficiency (27.9%), PEGylated Ta NPs depict high multiwavelength contrast capability for enhancing PA imaging to satisfy the various demands (penetration depth, background noise, etc.) of clinical diagnosis as needed. Particularly, the PA intensity of the tumor region postinjection is greatly increased by 4.87, 7.47, and 6.87-fold than that of preinjection under 680, 808, and 970 nm laser irradiation, respectively. In addition, Ta NPs with negligible cytotoxicity are capable of eliminating undesirable reactive oxygen species, ensuring the safety for biomedical applications. This work introduces a silane-coupling strategy for the surface engineering of Ta NPs, and highlights the potential of Ta NPs as a biocompatible metallic contrast agent for multiwavelength photoacoustic image.


Assuntos
Meios de Contraste/química , Nanopartículas/química , Neoplasias/diagnóstico , Técnicas Fotoacústicas , Polietilenoglicóis/química , Tantálio/química , Animais , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Injeções Intravenosas , Camundongos , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Espécies Reativas de Oxigênio/metabolismo
7.
Ann Rheum Dis ; 78(6): 773-780, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936065

RESUMO

OBJECTIVE: The strong genetic contribution of the major histocompatibility complex (MHC) region to rheumatoid arthritis (RA) has been generally attributed to human leukocyte antigen (HLA)-DRB1. However, due to the high polymorphisms and linkage disequilibrium within MHC, it is difficult to define novel and/or independent genetic risks using conventional HLA genotyping or chip-based microarray technology. This study aimed to identify novel RA risk variants by performing deep sequencing for MHC. METHODS: We first conducted target sequencing for the entire MHC region in 357 anticitrullinated protein antibodies (ACPA)-positive patients with RA and 1001 healthy controls, and then performed HLA typing in an independent case-control cohort consisting of 1415 samples for validation. All study subjects were Han Chinese. Genetic associations for RA susceptibility and severity were analysed. Comparative modelling was constructed to predict potential functions for the newly discovered RA association variants. RESULTS: HLA-DQα1:160D conferred the strongest and independent susceptibility to ACPA-positive RA (p=6.16×10-36, OR=2.29). DRß1:37N had an independent protective effect (p=5.81×10-16, OR=0.49). As predicted by comparative modelling, the negatively charged DQα1:160D stabilises the dimer of dimers, thus may lead to an increased T cell activation. The negatively charged DRß1:37N encoding alleles preferentially bind with epitope P9 arginine, thus may result in a decreased RA susceptibility. CONCLUSIONS: We provide the first evidence that HLA-DQα1:160D, instead of HLA-DRB1*0405, is the strongest and independent genetic risk for ACPA-positive RA in Han Chinese. Our study also illustrates the value of deep sequencing for fine-mapping disease risk variants in the MHC region.


Assuntos
Artrite Reumatoide/genética , Cadeias alfa de HLA-DQ/genética , Adulto , Idoso , Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Povo Asiático/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Cadeias HLA-DRB1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Teste de Histocompatibilidade/métodos , Humanos , Ativação Linfocitária/genética , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia
8.
Small ; 14(14): e1703789, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29468828

RESUMO

Near-infrared light-mediated theranostic agents with superior tissue penetration and minimal invasion have captivated researchers in cancer research in the past decade. Herein, a probe sonication-assisted liquid exfoliation approach for scalable and continual synthesis of colloidal rhenium disulfide nanosheets, which is further explored as theranostic agents for cancer diagnosis and therapy, is reported. Due to high-Z element of Re (Z = 75) and significant photoacoustic effect, the obtained PVP-capped ReS2 nanosheets are evaluated as bimodality contrast agents for computed tomography and photoacoustic imaging. In addition, utilizing the strong near-infrared absorption and ultrahigh photothermal conversion efficiency (79.2%), ReS2 nanosheets could also serve as therapeutic agents for photothermal ablation of tumors with a tumor elimination rate up to 100%. Importantly, ReS2 nanosheets show no obvious toxicity based on the cytotoxicity assay, serum biochemistry, and histological analysis. This work highlights the potentials of ReS2 nanosheets as a single-component theranostic nanoplatform for bioimaging and antitumor therapy.


Assuntos
Fototerapia/métodos , Rênio/química , Nanomedicina Teranóstica/métodos , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X
9.
Semin Cancer Biol ; 35 Suppl: S78-S103, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25936818

RESUMO

Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.


Assuntos
Apoptose/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/genética , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
J Cell Biochem ; 117(10): 2357-69, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26950525

RESUMO

Uterine fibroids (leiomyomas) are very common benign tumors grown on the smooth muscle layer of the uterus, present in up to 75% of reproductive-age women and causing significant morbidity in a subset of this population. Although the etiology and biology of uterine fibroids are unclear, strong evidence supports that cell proliferation, angiogenesis and fibrosis are involved in their formation and growth. Currently the only cure for uterine fibroids is hysterectomy; the available alternative therapies have limitations. Thus, there is an urgent need for developing a novel strategy for treating this condition. The green tea polyphenol epigallocatechin gallate (EGCG) inhibits the growth of uterine leiomyoma cells in vitro and in vivo, and the use of a green tea extract (containing 45% EGCG) has demonstrated clinical activity without side effects in women with symptomatic uterine fibroids. However, EGCG has a number of shortcomings, including low stability, poor bioavailability, and high metabolic transformations under physiological conditions, presenting challenges for its development as a therapeutic agent. We developed a prodrug of EGCG (Pro-EGCG or 1) which shows increased stability, bioavailability and biological activity in vivo as compared to EGCG. We also synthesized prodrugs of EGCG analogs, compounds 2a and 4a, in order to potentially reduce their susceptibility to methylation/inhibition by catechol-O-methyltransferase. Here, we determined the effect of EGCG, Pro-EGCG, and 2a and 4a on cultured human uterine leiomyoma cells, and found that 2a and 4a have potent antiproliferative, antiangiogenic, and antifibrotic activities. J. Cell. Biochem. 117: 2357-2369, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Leiomioma/patologia , Neovascularização Patológica/patologia , Pró-Fármacos/farmacologia , Chá/química , Neoplasias Uterinas/patologia , Western Blotting , Catequina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Imunofluorescência , Humanos , Leiomioma/tratamento farmacológico , Leiomioma/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo
11.
Biochem Biophys Res Commun ; 478(2): 804-10, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27501757

RESUMO

Celastrol has potential application for the treatment of prostate cancer. However it causes autophagy as a protective response in prostate and other types of cancers, thus unveiling the underlying mechanisms may benefit its future application. In the present study, we demonstrate that the miR-17-92a cluster plays a negative role in celastrol induced-autophagy. Dissection of miR-17-92a cluster revealed the role of miR-17 seed family (miR-20a and miR-17) in autophagy inhibition in the context of prostate cancer cells. Autophagy-related gene ATG7 was validated as a target of miR-17 seed family by dual-luciferase assay and qPCR. Celastrol induced autophagy was inhibited by miR-20a or miR-17, while the inhibitory effects were rescued in the presence of pcDNA-ATG7 lacking 3' UTR, demonstrating that these two members target ATG7 to inhibit celastrol-induced autophagy. As celastrol degrades androgen receptor (AR), a key transcription factor in prostate cancer cells, we further investigated whether AR affected miR-17-92a expression in prostate cancer cells. AR binding sites were found in the promoter and two introns of miR-17-92a. In addition, higher expression levels of miR-17-92a were observed in AR positive cells compared with AR negative cells. Ectopic expression of AR could enhance the expression of miR-17-92a cluster in AR-negative prostate cancer cells while knockdown of AR decreased miR-17-92a expression in AR-positive cells, demonstrating the regulation of AR on miR-17-92a transcription. In summary, our results demonstrate that celastrol downregulates AR and its target miR-17-92a, leading to autophagy induction in prostate cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Receptores Androgênicos/genética , Triterpenos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Triterpenos Pentacíclicos , Extratos Vegetais/química , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , RNA Longo não Codificante , Receptores Androgênicos/metabolismo , Transdução de Sinais , Tripterygium/química
12.
Plant Physiol ; 167(4): 1604-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667317

RESUMO

Nitric oxide (NO) and reactive oxygen species (ROS) are two classes of key signaling molecules involved in various developmental processes and stress responses in plants. The burst of NO and ROS triggered by various stimuli activates downstream signaling pathways to cope with abiotic and biotic stresses. Emerging evidence suggests that the interplay of NO and ROS plays a critical role in regulating stress responses. However, the underpinning molecular mechanism remains poorly understood. Here, we show that NO positively regulates the activity of the Arabidopsis (Arabidopsis thaliana) cytosolic ascorbate peroxidase1 (APX1). We found that S-nitrosylation of APX1 at cysteine (Cys)-32 enhances its enzymatic activity of scavenging hydrogen peroxide, leading to the increased resistance to oxidative stress, whereas a substitution mutation at Cys-32 causes the reduction of ascorbate peroxidase activity and abolishes its responsiveness to the NO-enhanced enzymatic activity. Moreover, S-nitrosylation of APX1 at Cys-32 also plays an important role in regulating immune responses. These findings illustrate a unique mechanism by which NO regulates hydrogen peroxide homeostasis in plants, thereby establishing a molecular link between NO and ROS signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases/genética , Citosol/metabolismo , Peróxido de Hidrogênio/metabolismo , Luz , Estresse Oxidativo , Plantas Geneticamente Modificadas , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Transdução de Sinais
13.
Nat Commun ; 15(1): 5224, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890293

RESUMO

Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.


Assuntos
Doenças das Plantas , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Secas , Phytophthora infestans , Plantas Geneticamente Modificadas , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Deleção de Genes , Proteômica
14.
Int J Biol Sci ; 20(1): 387-402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164176

RESUMO

Colon adenocarcinoma (COAD) is the most common malignancy of the digestive tract, which is characterized by a dismal prognosis. No effective treatment has been established presently, thus there is an urgent need to understand the mechanisms driving COAD progression in order to develop effective therapeutic approaches and enhance clinical outcomes. In this study, we found that KLF7 is overexpressed in COAD tissues and correlated with clinicopathological features of COAD. Both gain-of-function and loss-of-function experiments have unequivocally demonstrated that overexpression of KLF7 promotes the growth and metastasis of COAD in vitro and in vivo, while KLF7 knockdown attenuated these effects. Mechanistically, our findings reveal that KLF7 can specifically bind to the promoter region of PDGFB (TGGGTGGAG), thus promoting the transcription of PDGFB and increasing its secretion. Subsequently, secreted PDGFB facilitates the progression of COAD by activating MAPK/ERK, PI3K/AKT, and JAK/STAT3 signaling pathways through PDGFRß. Additionally, we found that sunitinib can block PDGFB signaling and inhibit COAD progression, offering a promising therapeutic strategy for COAD treatment.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Adenocarcinoma/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Becaplermina , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
15.
iScience ; 27(2): 108941, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333708

RESUMO

The significant anatomical changes in large intestine of germ-free (GF) mice provide excellent material for understanding microbe-host crosstalk. We observed significant differences of GF mice in anatomical and physiological involving in enlarged cecum, thinned mucosal layer and enriched water in cecal content. Furthermore, integration analysis of multi-omics data revealed the associations between the structure of large intestinal mesenchymal cells and the thinning of the mucosal layer. Increased Aqp8 expression in GF mice may contribute to enhanced water secretion or altered hydrodynamics in the cecum. In addition, the proportion of epithelial cells, nutrient absorption capacity, immune function and the metabolome of cecum contents of large intestine were also significantly altered. Together, this is the first systematic study of the transcriptome and metabolome of the cecum and colon of GF mice, and these findings contribute to our understanding of the intricate interactions between microbes and the large intestine.

16.
Adv Sci (Weinh) ; 10(12): e2207152, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36755192

RESUMO

Recent genetic evidence has linked WNT downstream mutations to fat distribution. However, the roles of WNTs in human obesity remain unclear. Here, the authors screen all Wnt-related paracrine factors in 1994 obese cases and 2161 controls using whole-exome sequencing (WES) and identify that 12 obese patients harbor the same mutations in RSPO1 (p.R219W/Q) predisposing to human obesity. RSPO1 is predominantly expressed in visceral fat, primarily in the fibroblast cluster, and is increased with adiposity. Mice overexpressing human RSPO1 in adipose tissues develop obesity under a high-fat diet (HFD) due to reduced brown/beige fat thermogenesis. In contrast, Rspo1 ablation resists HFD-induced adiposity by increasing thermogenesis. Mechanistically, RSPO1 overexpression or administration significantly inhibits adipocyte mitochondrial respiration and thermogenesis via LGR4-Wnt/ß-catenin signaling pathway. Importantly, humanized knockin mice carrying the hotspot mutation (p.R219W) display suppressed thermogenesis and recapitulate the adiposity feature of obese carriers. The mutation disrupts RSPO1's electrostatic interaction with the extracellular matrix, leading to excessive RSPO1 release that activates LGR4-Wnt/ß-catenin signaling and attenuates thermogenic capacity in differentiated beige adipocytes. Therefore, these findings identify that gain-of-function mutations and excessive expression of RSPO1, acting as a paracrine Wnt activator, suppress fat thermogenesis and contribute to obesity in humans.


Assuntos
Adipócitos Bege , Adiposidade , Humanos , Camundongos , Animais , Adiposidade/genética , Adipócitos Bege/metabolismo , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Termogênese/genética , Mutação/genética , Trombospondinas/genética , Trombospondinas/metabolismo
17.
Nat Plants ; 9(12): 2085-2094, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38049516

RESUMO

Plant signalling peptides are typically released from larger precursors by proteolytic cleavage to regulate plant growth, development and stress responses. Recent studies reported the characterization of a divergent family of Brassicaceae-specific peptides, SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs), and their perception by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Here, we reveal that the SCOOP family is highly expanded, containing at least 50 members in the Columbia-0 reference Arabidopsis thaliana genome. Notably, perception of these peptides is strictly MIK2-dependent. How bioactive SCOOP peptides are produced, and to what extent their perception is responsible for the multiple physiological roles associated with MIK2 are currently unclear. Using N-terminomics, we validate the N-terminal cleavage site of representative PROSCOOPs. The cleavage sites are determined by conserved motifs upstream of the minimal SCOOP bioactive epitope. We identified subtilases necessary and sufficient to process PROSCOOP peptides at conserved cleavage motifs. Mutation of these subtilases, or their recognition motifs, suppressed PROSCOOP cleavage and associated overexpression phenotypes. Furthermore, we show that higher-order mutants of these subtilases show phenotypes reminiscent of mik2 null mutant plants, consistent with impaired PROSCOOP biogenesis, and demonstrating biological relevance of SCOOP perception by MIK2. Together, this work provides insights into the molecular mechanisms underlying the functions of the recently identified SCOOP peptides and their receptor MIK2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Proteínas de Arabidopsis/genética , Serina , Arabidopsis/fisiologia , Peptídeos , Proteínas Quinases/genética , Receptores de Superfície Celular/genética
18.
Comput Struct Biotechnol J ; 21: 3466-3477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152123

RESUMO

The gut-liver axis is a complex bidirectional communication pathway between the intestine and the liver in which microorganisms and their metabolites flow from the intestine through the portal vein to the liver and influence liver function. In a sterile environment, the phenotype or function of the liver is altered, but few studies have investigated the specific cellular and molecular effects of microorganisms on the liver. To this end, we constructed single-cell and spatial transcriptomic (ST) profiles of germ-free (GF) and specific-pathogen-free (SPF) mouse livers. Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) revealed that the ratio of most immune cells was altered in the liver of GF mice; in particular, natural killer T (NKT) cells, IgA plasma cells (IgAs) and Kupffer cells (KCs) were significantly reduced in GF mice. Spatial enhanced resolution omics sequencing (Stereo-seq) confirmed that microorganisms mediated the accumulation of Kupffer cells in the periportal zone. Unexpectedly, IgA plasma cells were more numerous and concentrated in the periportal vein in liver sections from SPF mice but less numerous and scattered in GF mice. ST technology also enables the precise zonation of liver lobules into eight layers and three patterns based on the gene expression level in each layer, allowing us to further investigate the effects of microbes on gene zonation patterns and functions. Furthermore, untargeted metabolism experiments of the liver revealed that the propionic acid levels were significantly lower in GF mice, and this reduction may be related to the control of genes involved in bile acid and fatty acid metabolism. In conclusion, the combination of sc/snRNA-seq, Stereo-seq, and untargeted metabolomics revealed immune system defects as well as altered bile acid and lipid metabolic processes at the single-cell and spatial levels in the livers of GF mice. This study will be of great value for understanding host-microbiota interactions.

19.
Front Oncol ; 12: 844648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223528

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Gemcitabine is the most commonly used chemotherapy for the treatment of PDAC, but the development of drug resistance still remains challenging. Recently, exosomes have emerged as important mediators for intercellular communication. Exosomes affect recipient cells' behavior through the engulfed cargos, however the specific cargos responsible for gemcitabine resistance in PDAC are poorly understood. Here, we reported that exosomes could transfer gemcitabine resistance via a metalloproteinase 14 (MMP14)-dependent mechanism. MMP14 was identified as a major differentially secreted protein from the gemcitabine-resistant PDAC cells by comparative secretome. It was packaged into the exosomes and transmitted from the chemoresistant cells to the sensitive ones. The exosome-transferred MMP14 could enhance drug resistance and promotes the sphere-formation and migration abilities of the recipient sensitive PDAC cells. Mechanically, exosome-transferred MMP14 promotes the stability of CD44, the cancer stem cell marker in the recipient cells. Our results indicate that MMP14 is a key player for exosome-mediated transfer of gemcitabine resistance, thus targeting MMP14 in exosomes may represent a novel strategy to limit gemcitabine resistance in PDAC.

20.
J Mater Chem B ; 10(11): 1709-1733, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35179545

RESUMO

Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system to detect specific cancer cells for efficient elimination. Unfortunately, the efficacy of these treatments has been limited to a fraction of patients within a subset of tumor types, and further studies are still needed to clarify these mechanisms and develop novel approaches to improve the efficacy of cancer immunotherapy. Emerging data suggest that the innate immune system also plays a key role in tumor immunosurveillance and generation of antitumor immune responses. Nanoparticles incorporating immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance antitumor immunity. Such nanoparticle-based cancer immunotherapies have received considerable attention and have been extensively studied in recent years. In this review, we will discuss the anticancer activities of nanoparticles designed to target innate immune pathways, including Toll-like receptor, nucleotide-binding oligomerization domain-like receptor, and retinoic acid-inducible gene-I-like receptor pathways, as well as DNA sensing pathways. In addition, nanoparticles that target key innate immune cell types, such as macrophages, myeloid-derived suppressor cells, dendritic cells, natural killer cells, and neutrophils, also will be investigated. In summary, although further research and clinical studies are still needed to solve the safety concerns and improve the efficacy of nanoplatform-based cancer immunotherapy, the recent studies presented in this review prove that nanoparticle-incorporated cancer immunotherapy is a highly promising treatment for cancer patients.


Assuntos
Nanopartículas , Neoplasias , Humanos , Sistema Imunitário/patologia , Imunoterapia , Neoplasias/patologia , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa