Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 34(1): 119-133, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38190633

RESUMO

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space by using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal data sets, we show scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome data set we generated from differentiating mouse embryonic stem cells over time, we show scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Regulação da Expressão Gênica
2.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36813563

RESUMO

Cell-state transition can reveal additional information from single-cell ribonucleic acid (RNA)-sequencing data in time-resolved biological phenomena. However, most of the current methods are based on the time derivative of the gene expression state, which restricts them to the short-term evolution of cell states. Here, we present single-cell State Transition Across-samples of RNA-seq data (scSTAR), which overcomes this limitation by constructing a paired-cell projection between biological conditions with an arbitrary time span by maximizing the covariance between two feature spaces using partial least square and minimum squared error methods. In mouse ageing data, the response to stress in CD4+ memory T cell subtypes was found to be associated with ageing. A novel Treg subtype characterized by mTORC activation was identified to be associated with antitumour immune suppression, which was confirmed by immunofluorescence microscopy and survival analysis in 11 cancers from The Cancer Genome Atlas Program. On melanoma data, scSTAR improved immunotherapy-response prediction accuracy from 0.8 to 0.96.


Assuntos
Perfilação da Expressão Gênica , RNA , Animais , Camundongos , RNA/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Genoma
3.
PLoS Biol ; 19(10): e3001419, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34618807

RESUMO

Evolving in sync with the computation revolution over the past 30 years, computational biology has emerged as a mature scientific field. While the field has made major contributions toward improving scientific knowledge and human health, individual computational biology practitioners at various institutions often languish in career development. As optimistic biologists passionate about the future of our field, we propose solutions for both eager and reluctant individual scientists, institutions, publishers, funding agencies, and educators to fully embrace computational biology. We believe that in order to pave the way for the next generation of discoveries, we need to improve recognition for computational biologists and better align pathways of career success with pathways of scientific progress. With 10 outlined steps, we call on all adjacent fields to move away from the traditional individual, single-discipline investigator research model and embrace multidisciplinary, data-driven, team science.


Assuntos
Biologia Computacional , Orçamentos , Comportamento Cooperativo , Humanos , Pesquisa Interdisciplinar , Tutoria , Motivação , Publicações , Recompensa , Software
4.
PLoS Comput Biol ; 18(10): e1010495, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36197936

RESUMO

COVID-19 patients display a wide range of disease severity, ranging from asymptomatic to critical symptoms with high mortality risk. Our ability to understand the interaction of SARS-CoV-2 infected cells within the lung, and of protective or dysfunctional immune responses to the virus, is critical to effectively treat these patients. Currently, our understanding of cell-cell interactions across different disease states, and how such interactions may drive pathogenic outcomes, is incomplete. Here, we developed a generalizable and scalable workflow for identifying cells that are differentially interacting across COVID-19 patients with distinct disease outcomes and use this to examine eight public single-cell RNA-seq datasets (six from peripheral blood mononuclear cells, one from bronchoalveolar lavage and one from nasopharyngeal), with a total of 211 individual samples. By characterizing the cell-cell interaction patterns across epithelial and immune cells in lung tissues for patients with varying disease severity, we illustrate diverse communication patterns across individuals, and discover heterogeneous communication patterns among moderate and severe patients. We further illustrate patterns derived from cell-cell interactions are potential signatures for discriminating between moderate and severe patients. Overall, this workflow can be generalized and scaled to combine multiple scRNA-seq datasets to uncover cell-cell interactions.


Assuntos
COVID-19 , Comunicação Celular , Humanos , Leucócitos Mononucleares , SARS-CoV-2 , Fluxo de Trabalho
5.
Nature ; 545(7653): 175-180, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467829

RESUMO

Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. Here we report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequences was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. Most melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.


Assuntos
Genoma Humano/genética , Melanoma/genética , Mutação/genética , DNA Helicases/genética , GTP Fosfo-Hidrolases/genética , Genes p16 , Humanos , Melanoma/classificação , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Neurofibromatose 1/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Fatores de Processamento de RNA/genética , Transdução de Sinais/efeitos dos fármacos , Telomerase/genética , Telômero/genética , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta/efeitos adversos , Proteína Nuclear Ligada ao X
6.
Genes Chromosomes Cancer ; 61(9): 561-571, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35670448

RESUMO

INTRODUCTION: Oral squamous cell carcinoma (OSCC) in the young (<50 years), without known carcinogenic risk factors, is on the rise globally. Whole genome duplication (WGD) has been shown to occur at higher rates in cancers without an identifiable carcinogenic agent. We aimed to evaluate the prevalence of WGD in a cohort of OSCC patients under the age of 50 years. METHODS: Whole genome sequencing (WGS) was performed on 28 OSCC patients from the Sydney Head and Neck Cancer Institute (SHNCI) biobank. An additional nine cases were obtained from The Cancer Genome Atlas (TCGA). RESULTS: WGD was seen in 27 of 37 (73%) cases. Non-synonymous, somatic TP53 mutations occurred in 25 of 27 (93%) cases of WGD and were predicted to precede WGD in 21 (77%). WGD was significantly associated with larger tumor size (p = 0.01) and was frequent in patients with recurrences (87%, p = 0.36). Overall survival was significantly worse in those with WGD (p = 0.05). CONCLUSIONS: Our data, based on one of the largest WGS datasets of young patients with OSCC, demonstrates a high frequency of WGD and its association with adverse pathologic characteristics and clinical outcomes. TP53 mutations also preceded WGD, as has been described in other tumors without a clear mutagenic driver.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Duplicação Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Pessoa de Meia-Idade , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
7.
Am J Kidney Dis ; 79(4): 549-560, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34461168

RESUMO

RATIONALE & OBJECTIVE: The risk of developing colorectal cancer in patients with chronic kidney disease (CKD) is twice that of the general population, but the factors associated with colorectal cancer are poorly understood. The aim of this study was to identify factors associated with advanced colorectal neoplasia in patients with CKD. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: Patients with CKD stages 3-5, including those treated with maintenance dialysis or transplantation across 11 sites in Australia, New Zealand, Canada, and Spain, were screened for colorectal neoplasia using a fecal immunochemical test (FIT) as part of the Detecting Bowel Cancer in CKD (DETECT) Study. EXPOSURE: Baseline characteristics for patients at the time of study enrollment were ascertained, including duration of CKD, comorbidities, and medications. OUTCOME: Advanced colorectal neoplasia was identified through a 2-step verification process with colonoscopy following positive FIT and 2-year clinical follow-up for all patients. ANALYTICAL APPROACH: Potential factors associated with advanced colorectal neoplasia were explored using multivariable logistic regression. Sensitivity analyses were performed using grouped LASSO (least absolute shrinkage and selection operator) logistic regression. RESULTS: Among 1,706 patients who received FIT-based screening-791 with CKD stages 3-5 not receiving kidney replacement therapy (KRT), 418 receiving dialysis, and 497 patients with a functioning kidney transplant-117 patients (6.9%) were detected to have advanced colorectal neoplasia (54 with CKD stages 3-5 without KRT, 34 receiving dialysis, and 29 transplant recipients), including 9 colorectal cancers. The factors found to be associated with advanced colorectal neoplasia included older age (OR per year older, 1.05 [95% CI, 1.03-1.07], P<0.001), male sex (OR, 2.27 [95% CI, 1.45-3.54], P<0.001), azathioprine use (OR, 2.99 [95% CI, 1.40-6.37], P=0.005), and erythropoiesis-stimulating agent use (OR, 1.92 [95% CI, 1.22-3.03], P=0.005). Grouped LASSO logistic regression revealed similar associations between these factors and advanced colorectal neoplasia. LIMITATIONS: Unmeasured confounding factors. CONCLUSIONS: Older age, male sex, erythropoiesis-stimulating agents, and azathioprine were found to be significantly associated with advanced colorectal neoplasia in patients with CKD.


Assuntos
Neoplasias Colorretais , Insuficiência Renal Crônica , Colonoscopia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Fezes , Humanos , Masculino , Sangue Oculto , Estudos Prospectivos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/terapia , Fatores de Risco
8.
BMC Bioinformatics ; 21(1): 530, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203358

RESUMO

BACKGROUND: Nutrigenomics aims at understanding the interaction between nutrition and gene information. Due to the complex interactions of nutrients and genes, their relationship exhibits non-linearity. One of the most effective and efficient methods to explore their relationship is the nutritional geometry framework which fits a response surface for the gene expression over two prespecified nutrition variables. However, when the number of nutrients involved is large, it is challenging to find combinations of informative nutrients with respect to a certain gene and to test whether the relationship is stronger than chance. Methods for identifying informative combinations are essential to understanding the relationship between nutrients and genes. RESULTS: We introduce Local Consistency Nutrition to Graphics (LC-N2G), a novel approach for ranking and identifying combinations of nutrients with gene expression. In LC-N2G, we first propose a model-free quantity called Local Consistency statistic to measure whether there is non-random relationship between combinations of nutrients and gene expression measurements based on (1) the similarity between samples in the nutrient space and (2) their difference in gene expression. Then combinations with small LC are selected and a permutation test is performed to evaluate their significance. Finally, the response surfaces are generated for the subset of significant relationships. Evaluation on simulated data and real data shows the LC-N2G can accurately find combinations that are correlated with gene expression. CONCLUSION: The LC-N2G is practically powerful for identifying the informative nutrition variables correlated with gene expression. Therefore, LC-N2G is important in the area of nutrigenomics for understanding the relationship between nutrition and gene expression information.


Assuntos
Algoritmos , Análise de Dados , Nutrigenômica , Fenômenos Fisiológicos da Nutrição Animal , Animais , Simulação por Computador , Regulação da Expressão Gênica , Camundongos , Dinâmica não Linear
9.
Prostate ; 80(6): 508-517, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119131

RESUMO

BACKGROUND: As a rare subtype of prostate carcinoma, basal cell carcinoma (BCC) has not been studied extensively and thus lacks systematic molecular characterization. METHODS: Here, we applied single-cell genomic amplification and RNA-Seq to a specimen of human prostate BCC (CK34ßE12+ /P63+ /PAP- /PSA- ). The mutational landscape was obtained via whole exome sequencing of the amplification mixture of 49 single cells, and the transcriptomes of 69 single cells were also obtained. RESULTS: The five putative driver genes mutated in BCC are CASC5, NUTM1, PTPRC, KMT2C, and TBX3, and the top three nucleotide substitutions are C>T, T>C, and C>A, similar to common prostate cancer. The distribution of the variant allele frequency values indicated that these single cells are from the same tumor clone. The 69 single cells were clustered into tumor, stromal, and immune cells based on their global transcriptomic profiles. The tumor cells specifically express basal cell markers like KRT5, KRT14, and KRT23 and epithelial markers EPCAM, CDH1, and CD24. The transcription factor covariance network analysis showed that the BCC tumor cells have distinct regulatory networks. By comparison with current prostate cancer datasets, we found that some of the bulk samples exhibit basal cell signatures. Interestingly, at single-cell resolution the gene expression patterns of prostate BCC tumor cells show uniqueness compared with that of common prostate cancer-derived circulating tumor cells. CONCLUSIONS: This study, for the first time, discloses the comprehensive mutational and transcriptomic landscapes of prostate BCC, which lays a foundation for the understanding of its tumorigenesis mechanism and provides new insights into prostate cancers in general.


Assuntos
Carcinoma Basocelular/genética , Neoplasias da Próstata/genética , Biópsia por Agulha , Carcinoma Basocelular/patologia , Amplificação de Genes , Perfilação da Expressão Gênica/métodos , Frequência do Gene , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias da Próstata/patologia , Análise de Célula Única/métodos , Células Estromais/patologia , Transcriptoma , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa