Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 205, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270700

RESUMO

Increasing evidence suggests that key cancer-causing driver genes continue to exert a sustained influence on the tumor microenvironment (TME), highlighting the importance of immunotherapeutic targeting of gene mutations in governing tumor progression. TP53 is a prominent tumor suppressor that encodes the p53 protein, which controls the initiation and progression of different tumor types. Wild-type p53 maintains cell homeostasis and genomic instability through complex pathways, and mutant p53 (Mut p53) promotes tumor occurrence and development by regulating the TME. To date, it has been wildly considered that TP53 is able to mediate tumor immune escape. Herein, we summarized the relationship between TP53 gene and tumors, discussed the mechanism of Mut p53 mediated tumor immune escape, and summarized the progress of applying p53 protein in immunotherapy. This study will provide a basic basis for further exploration of therapeutic strategies targeting p53 protein.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Genes p53 , Neoplasias/genética , Cognição , Instabilidade Genômica , Microambiente Tumoral/genética
2.
Environ Res ; 241: 117606, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951378

RESUMO

The formation of stable and mature biofilms affects the efficient and stable removal of ammonium by biological activated carbon (BAC). In this study, the new granular activated carbon (GAC) was preloaded with the carbon source (glucose and sucrose) and nano manganese dioxide (nMnO2) before using. Then tests were performed to determine whether substrate preloading promoted ammonium removal. The ammonium removal treated by nMnO2 coupled with sucrose-loaded BAC reached 49.1 ± 2.5%, which was 1.7 times higher than that by the nonloaded BAC 28.2 ± 1.9%). The biomass on the substrate-loaded BAC reached 5.83 × 106-1.22 × 107 cells/g DW GAC on Day 7, which was 4.6-9.5 times higher than the value of the nonloaded BAC (1.28 × 106 cells/g DW GAC). The amount of extracellular polymer (i.e., protein) on nMnO2 coupled to sucrose-loaded BAC was promoted significantly. Flavobacterium (0.7%-11%), Burkholderiaceae (13%-20%) and Aquabacterium (30%-67%) were the dominant functional bacteria on the substrate-loaded BAC, which were conducive to the nitrification or denitrification process. The results indicated that loading nMnO2 and/or a carbon source accelerated the formation of biofilms on BAC and ammonium removal. Additionally, the ammonium removal treated by nMnO2 coupled with sucrose-loaded BAC was contributed by microbial degradation (56.0 ± 2.5%), biofilm adsorption (38.7 ± 2.1%) and GAC adsorption (5.3 ± 0.3%), suggesting a major role of microbial degradation.


Assuntos
Compostos de Amônio , Purificação da Água , Carvão Vegetal , Nitrificação , Biofilmes , Sacarose , Purificação da Água/métodos
3.
Environ Res ; 232: 116253, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276973

RESUMO

In this study, the relative residual UV absorbance (UV254) and/or electron donating capacity (EDC) was investigated as a surrogate parameter to evaluate the abatement of micropollutants during the Fe(II)/PMS and Mn(II)/NTA/PMS processes. In the Fe(II)/PMS process, due to the generation of SO4•- and •OH at acidic pH, UV254 and EDC abatement was greater at pH 5. In the Mn(II)/NTA/PMS process, UV254 abatement was greater at pH 7 and 9, while EDC abatement was greater at pH 5 and 7. This was attributed to the fact that MnO2 was formed at alkaline pH to remove UV254 by coagulation, and manganese intermediates (Mn(V)) were formed at acidic pH to remove EDC via electron transfer. Due to the strong oxidation capacity of SO4•-, •OH and Mn(V), the abatement of micropollutants increased with increasing dosages of oxidant in different waters in both processes. In the Fe(II)/PMS and Mn(II)/NTA/PMS processes, except for nitrobenzene (∼23% and 40%, respectively), the removal of other micropollutants was greater than 70% when the oxidant dosages were greater in different waters. The linear relationship between the relative residual UV254, EDC and the removal of micropollutants was established in different waters, showing a one-phase or two-phase linear relationship. The differences of the slopes for one-phase linear correlation in the Fe(II)/PMS process (micropollutant-UV254: 0.36-2.89, micropollutant-EDC: 0.26-1.75) were less than that in the Mn(II)/NTA/PMS process (micropollutant-UV254: 0.40-13.16, micropollutant-EDC: 0.51-8.39). Overall, these results suggest that the relative residual UV254 and EDC could truly reflect the removal of micropollutants during the Fe(II)/PMS and Mn(II)/NTA/PMS processes.


Assuntos
Elétrons , Poluentes Químicos da Água , Compostos de Manganês , Poluentes Químicos da Água/análise , Óxidos , Oxirredução , Oxidantes , Compostos Ferrosos
4.
J Dairy Sci ; 106(11): 7396-7406, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641274

RESUMO

The Ca2+-selective epithelial channel TRPV5 plays a significant role in renal calcium reabsorption and improving osteoporosis (OP). In this study, we investigated the mechanisms of yak milk on osteoporosis mice in TRPV5-mediated Ca2+ reabsorption in the kidney. We observed that treatment of OP mice with yak milk reconstructed bone homeostasis demonstrated by increasing the levels of OPG as well as decreasing the levels of TRAP and ALP in serum. Additionally, yak milk reduced the level of parathyroid hormone (PTH) and elevated 1,25-(OH)2D3 and calcitonin (CT), and inhibited the excretion of Ca/Cr and Pi/Cr in OP mice, which explained by regulating hormone levels and thus enhance the renal Ca2+ reabsorption. Further analysis exhibited that yak milk upregulated the expression of TRPV5 protein and mRNA as well as calbindin-D28k in OP mice kidneys. Overall, these outcomes demonstrate that yak milk enhances renal Ca2+ reabsorption through the TRPV5 pathway synergistically with calbindin-D28k, thus ameliorating OP mice. This provides a new perspective for yak milk as a nutritional supplement to prevent osteoporosis.

5.
Mikrochim Acta ; 189(7): 262, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727378

RESUMO

By utilizing a target biorecognition reaction to induce the self-assembly of G-quadruplexes and the aggregation of gold nanoparticles (Au NPs), this work develops a novel colorimetric biosensing method for kanamycin (Kana) antibiotic detection. The compact G-quadruplex structure was assembled from its two half-split sequences which were designed in two hairpin substrates of the Mg2+-dependent DNAzyme (MNAzyme). Besides hybridizing with the aptamer strand, the MNAzyme sequence was also split into two half fragments to be designed in the two substrates. Upon the aptamer-recognition reaction toward Kana, the MNAzyme strand could be quantitatively released to cause the exposure of the split G-quadruplex-sequences on two hairpin substrate-modified Au NPs and simultaneous release of two half fragments of the MNAzyme-sequence. Thus, the K+-assisted self-folding of G-quadruplexes causes the cross-linking of the two Au NPs to realize the Au NP aggregation-based colorimetric signal output (measured at the largest absorption peak near 520 nm). Meanwhile, the self-assembled formation of the second MNAzyme drastically amplified the signal response. Under the optimal conditions, a wide linear range from 0.1 pg mL-1 to 10 ng mL-1 and an ultrahigh sensitivity with the detection limit of 76 fg mL-1 were obtained. The dose-recovery experiments in real samples showed satisfactory results with recoveries from 98.4 to 105.4% and relative errors compared with the ELISA method less than 4.1%. Due to the high selectivity, excellent repeatability and stability, and simple manipulation, this method indicates a promising potential for practical applications. A novel homogeneous biosensing method was developed for the convenient detection of the kanamycin antibiotic. The target biorecognition-induced and dual DNAzyme-catalytic assembly of G-quadruplexes enabled the amplified aggregation of gold nanoparticles for the simple, cheap, stable, and ultrasensitive colorimetric signal transduction of the method.


Assuntos
DNA Catalítico , Quadruplex G , Nanopartículas Metálicas , Antibacterianos , DNA Catalítico/química , Ouro/química , Canamicina , Nanopartículas Metálicas/química , Oligonucleotídeos
6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(7): 819-826, 2020 Jul 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-32879076

RESUMO

OBJECTIVES: To evaluate the application value of CT-based radiomics features for the ascending and descending types of nasopharyngeal carcinoma (NPC). METHODS: A total of 217 NPC patients (48 ascending type and 169 descending type), who obtained CT images before radiotherapy in Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University from February 2015 to October 2017, were analyzed retrospectively. All patients were randomly divided into a training set (n=153) and a test set (n=64). Gross tumor volume in the nasopharynx (GTVnx) was selected as regions of interest (ROI) and was analyzed by radiomics. A total of 1 300 radiomics features were extracted via IBEX. The least absolute shrinkage and selection operator (LASSO) logistic regression was performed to choose the significant features. Support vector machine (SVM) and random forest (RF) classifiers were built and verified. RESULTS: Six features were selected by the LASSO from 1 300 radiomics features. Compared with SVM classifier, RF classifier showed better classification performance. The area under curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, sensitivity, and specificity were 0.989, 0.941, 1.000, and 0.924, respectively for the training set; 0.994, 0.937, 1.000, and 0.924, respectively for the validation set. CONCLUSIONS: CT-based radiomics features possess great potential in differentiating ascending and descending NPC. It provides a certain basis for accurate medical treatment of NPC, and may affect the treatment strategy of NPC in the future.


Assuntos
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade
7.
Ann Vasc Surg ; 54: 290-297, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30081175

RESUMO

BACKGROUND: As opposed to an endoluminal stent graft, a multilayer stent (MS) consists of a porous mesh, which allows for the possibility of treating pararenal aortic aneurysms (PRAAs) that involve a significant branch vessel. However, the choice of the density of the MS plays a vital role in isolating the aneurysm and allowing unobstructed blood flow in the branch vessel. METHOD: In the present study, we examined 3 cases (without a stent and with single-layer and double-layer stents) via numerical simulations to explore the feasibility of the MSs used in the treatment of such aneurysms and estimate whether there is a more appropriate or optimal stent density. RESULTS: With stent intervention, the velocity of blood flow in the sac decreased, but the pressure on the surface of the aneurysm did not decrease although it became more uniform. In addition, the "region of double low" (with low wall shear stress and a low Sherwood number) enlarged after stent implantation. Even with the double-layer stent, however, the flux of the branch vessel was still above normal, and we could predict that the optimal stent porosity was approximately 49.9%. CONCLUSIONS: Unlike in previous studies, an MS could not be feasibly applied to high-risk PRAAs. However, an MS can induce sac thrombosis in the later stages while maintaining visceral vessel patency, and our results suggest that the optimal stent may be a 4-layer stent.


Assuntos
Aneurisma da Aorta Abdominal/cirurgia , Hemorreologia , Oxigênio/metabolismo , Stents , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Humanos , Modelos Cardiovasculares , Desenho de Prótese , Resistência ao Cisalhamento , Stents/efeitos adversos , Estresse Mecânico
8.
Med Teach ; 41(10): 1124-1128, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31215320

RESUMO

Purpose: Case-based learning (CBL) is now used as a teaching strategy to promote clinical problem-solving ability. The purpose of this study was to determine whether CBL is superior to the traditional teaching method in teaching lung cancer curriculum to oncology students. Methods: This study was a randomized controlled trial, enrolled 80 first-year oncology postgraduates from Bengbu medical college in the past 3 years. They were randomized to divide into 2 groups, had courses with the same lung cancer contents and timing. The experimental group (n = 40) utilized the CBL method while the control group (n = 40) used the traditional lecture-based teaching method. A questionnaire was used to attain the students' learning satisfaction and self-efficacy of the course, and a post-study examination was used to assess end-of-course performance. Results: Complete data were obtained from participating students (n = 40 in CBL; n = 40 in traditional teaching). The CBL group performed significantly better in questionnaire and examination compared to traditional teaching groups. Students showed high levels of satisfaction and problem-solving ability in the CBL group. Conclusion: Compared with the traditional teaching method. The case teaching method is a more effective teaching method to improve the ability of problem-solving for graduate students in medical oncology.


Assuntos
Educação de Pós-Graduação em Medicina/métodos , Oncologia/educação , Aprendizagem Baseada em Problemas/métodos , Adulto , Atitude do Pessoal de Saúde , Humanos , Internato e Residência , Masculino , Estudantes de Medicina/psicologia , Inquéritos e Questionários , Adulto Jovem
9.
J Mater Chem B ; 12(13): 3191-3208, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497358

RESUMO

Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint inhibitor-based immunotherapy has provided a unique and potent weapon against cancer in clinical practice. The likelihood of achieving beneficial effects from PD-L1/PD-1 immune checkpoint blockade (ICB) therapy is clinically assessed by detecting PD-L1 expression through invasive tissue biopsies. However, PD-L1 expression is susceptible to tumor heterogeneity and dynamic response to ICB therapy. Moreover, currently, anti-PD-L1 immunotherapy still faces challenges of the low targeting efficiency of antibody drugs and the risk of immune-associated adverse events. To overcome these issues, advanced nanotechnology has been developed for the purpose of quantitative, non-invasive, and dynamic analyses of PD-L1, and to enhance the efficiency of ICB therapy. In this review, we first introduce the nanoprobe-assisted in vitro/in vivo modalities for the selective and sensitive analysis of PD-L1 during the diagnostic and therapeutic process. On the other hand, the feasibility of fabricating diverse functional nanocarriers as smart delivery systems for precisely targeted delivery of PD-L1 immune checkpoint inhibitors and combined therapies is highlighted. Finally, the current challenges are discussed and future perspectives for PD-L1-targeted cancer theranostics in preclinical research and clinical settings are proposed.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Medicina de Precisão , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico
10.
J Med Case Rep ; 18(1): 303, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918846

RESUMO

BACKGROUND: Hemorrhage is the most common major complication after liver biopsy. Hemothorax is one type of bleeding and is very rare and dangerous. Several cases of hemothorax subsequent to liver biopsy have been documented, primarily attributed to injury of the intercostal artery or inferior phrenic artery and a few resulting from lung tissue damage; however, no previous case report of hemothorax caused by injury of musculophrenic artery after liver biopsy has been reported. CASE PRESENTATION: A 45-year-old native Chinese woman diagnosed with primary biliary cirrhosis due to long-term redness in urination and abnormal blood test indicators was admitted to our hospital for an ultrasound-guided liver biopsy to clarify pathological characteristics and disease staging. A total of 2 hours after surgery, the patient complained of discomfort in the right chest and abdomen. Ultrasound revealed an effusion in the right thorax and hemothorax was strongly suspected. The patient was immediately referred to the interventional department for digital subtraction angiography. Super-selective angiography of the right internal thoracic artery was performed which revealed significant contrast medium extravasation from the right musculophrenic artery, the terminal branch of the internal thoracic artery. Embolization was performed successfully. The vital signs of the patient were stabilized after the transarterial embolization and supportive treatment. CONCLUSION: This case draws attention to the musculophrenic artery as a potential source of hemorrhage after percutaneous liver biopsy.


Assuntos
Embolização Terapêutica , Hemotórax , Fígado , Humanos , Hemotórax/etiologia , Feminino , Pessoa de Meia-Idade , Fígado/patologia , Fígado/diagnóstico por imagem , Fígado/irrigação sanguínea , Ultrassonografia de Intervenção , Biópsia Guiada por Imagem/efeitos adversos , Angiografia Digital
11.
iScience ; 27(2): 108956, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318386

RESUMO

B7-H3 is a common oncogene found in various cancer types. However, the molecular mechanisms underlying abnormal B7-H3 expression and colorectal cancer (CRC) progression need to be extensively explored. B7-H3 was upregulated in human CRC tissues and its abnormal expression was correlated with a poor prognosis in CRC patients. Notably, gain- and loss-of-function experiments revealed that B7-H3 knockdown substantially inhibited cell proliferation, migration, and invasion in vitro, whereas exogenous B7-H3 expression yielded contrasting results. In addition, silencing of B7-H3 inhibited tumor growth in a xenograft mouse model. Mechanistically, our study demonstrated that the N6-methyladenosine (m6A) binding protein YTHDF1 augmented B7-H3 expression in an m6A-dependent manner. Furthermore, rescue experiments demonstrated that reintroduction of B7-H3 considerably abolished the inhibitory effects on cell proliferation and invasion induced by silencing YTHDF1. Our results suggest that the YTHDF1-m6A-B7-H3 axis is crucial for CRC development and progression and may represent a potential therapeutic target for CRC treatment.

12.
Gels ; 10(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920950

RESUMO

The management of brain tumors presents numerous challenges, despite the employment of multimodal therapies including surgical intervention, radiotherapy, chemotherapy, and immunotherapy. Owing to the distinct location of brain tumors and the presence of the blood-brain barrier (BBB), these tumors exhibit considerable heterogeneity and invasiveness at the histological level. Recent advancements in hydrogel research for the local treatment of brain tumors have sought to overcome the primary challenge of delivering therapeutics past the BBB, thereby ensuring efficient accumulation within brain tumor tissues. This article elaborates on various hydrogel-based delivery vectors, examining their efficacy in the local treatment of brain tumors. Additionally, it reviews the fundamental principles involved in designing intelligent hydrogels that can circumvent the BBB and penetrate larger tumor areas, thereby facilitating precise, controlled drug release. Hydrogel-based drug delivery systems (DDSs) are posited to offer a groundbreaking approach to addressing the challenges and limitations inherent in traditional oncological therapies, which are significantly impeded by the unique structural and pathological characteristics of brain tumors.

13.
Virology ; 595: 110093, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692134

RESUMO

Oncolytic virotherapy stands out as a burgeoning and promising therapeutic paradigm, harnessing the intrinsic cytotoxicity of oncolytic viruses for selective replication and dissemination within tumors. The primary mode of action revolves around the direct eradication of tumor cells. In our previous investigations, we formulated an oncolytic herpes simplex virus type 2 (OH2) and substantiated its anti-tumor efficacy both in vivo and in vitro. Subsequently, we embarked on a phase I/II clinical trial in China (NMPA, 2018L02743) and the USA (FDA, IND 27137) to assess OH2's safety, biodistribution, and anti-tumor activity as a standalone agent in patients with advanced solid tumors. In this investigation, our primary focus was to comprehend the influence of the major capsid protein VP5 of OH2 on its efficacy as an antitumor agent. Our findings underscore that the VP5 protein significantly amplifies OH2's oncolytic impact on A549 cells. Additionally, we observed that VP5 actively promotes the induction of apoptosis in A549 cells, both in vivo and in vitro. Through comprehensive transcriptional sequencing, we further authenticated that the VP5 protein triggers apoptosis-related signaling pathways and Gene Ontology (GO) terms in A549 cells. Moreover, we scrutinized differentially expressed genes in the p53-dependent apoptosis pathway and conducted meticulous in vitro validation of these genes. Subsequently, we delved deeper into unraveling the functional significance of the TP53I3 gene and conclusively affirmed that the VP5 protein induces apoptosis in A549 cells through the TP53I3 gene. These revelations illuminate the underlying mechanisms of OH2's antitumor activity and underscore the pivotal role played by the VP5 protein. The outcomes of our study harbor promising implications for the formulation of effective oncolytic virotherapy strategies in cancer treatment.


Assuntos
Apoptose , Herpesvirus Humano 2 , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Células A549 , Terapia Viral Oncolítica/métodos , Animais , Herpesvirus Humano 2/fisiologia , Herpesvirus Humano 2/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
EPMA J ; 15(1): 67-97, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463626

RESUMO

Relevance: The proteasome is a crucial mechanism that regulates protein fate and eliminates misfolded proteins, playing a significant role in cellular processes. In the context of lung cancer, the proteasome's regulatory function is closely associated with the disease's pathophysiology, revealing multiple connections within the cell. Therefore, studying proteasome inhibitors as a means to identify potential pathways in carcinogenesis and metastatic progression is crucial in in-depth insight into its molecular mechanism and discovery of new therapeutic target to improve its therapy, and establishing effective biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment for lung squamous carcinoma in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods: This study identified differentially expressed proteasome genes (DEPGs) in lung squamous carcinoma (LUSC) and developed a gene signature validated through Kaplan-Meier analysis and ROC curves. The study used WGCNA analysis to identify proteasome co-expression gene modules and their interactions with the immune system. NMF analysis delineated distinct LUSC subtypes based on proteasome gene expression patterns, while ssGSEA analysis quantified immune gene-set abundance and classified immune subtypes within LUSC samples. Furthermore, the study examined correlations between clinicopathological attributes, immune checkpoints, immune scores, immune cell composition, and mutation status across different risk score groups, NMF clusters, and immunity clusters. Results: This study utilized DEPGs to develop an eleven-proteasome gene-signature prognostic model for LUSC, which divided samples into high-risk and low-risk groups with significant overall survival differences. NMF analysis identified six distinct LUSC clusters associated with overall survival. Additionally, ssGSEA analysis classified LUSC samples into four immune subtypes based on the abundance of immune cell infiltration with clinical relevance. A total of 145 DEGs were identified between high-risk and low-risk score groups, which had significant biological effects. Moreover, PSMD11 was found to promote LUSC progression by depending on the ubiquitin-proteasome system for degradation. Conclusions: Ubiquitinated proteasome genes were effective in developing a prognostic model for LUSC patients. The study emphasized the critical role of proteasomes in LUSC processes, such as drug sensitivity, immune microenvironment, and mutation status. These data will contribute to the clinically relevant stratification of LUSC patients for personalized 3P medical approach. Further, we also recommend the application of the ubiquitinated proteasome system in multi-level diagnostics including multi-omics, liquid biopsy, prediction and targeted prevention of chronic inflammation and metastatic disease, and mitochondrial health-related biomarkers, for LUSC 3PM practice. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00352-w.

15.
Oncogene ; 43(16): 1190-1202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409551

RESUMO

Protein ubiquitination is a common post-translational modification and a critical mechanism for regulating protein stability. This study aimed to explore the role and potential molecular mechanism of ubiquitin-specific peptidase 38 (USP38) in the progression of lung adenocarcinoma (LUAD). USP38 expression was significantly higher in patients with LUAD than in their counterparts, and higher USP38 expression was closely associated with a worse prognosis. USP38 silencing suppresses the proliferation of LUAD cells in vitro and impedes the tumorigenic activity of cells in xenograft mouse models in vivo. Further, we found that USP38 affected the protein stability of transcription factor Krüppel-like factors 5 (KLF5) by inhibiting its degradation. Subsequent mechanistic investigations showed that the N-terminal of USP38 (residues 1-400aa) interacted with residues 1-200aa of KLF5, thereby stabilizing the KLF5 protein by deubiquitination. Moreover, we found that PIAS1-mediated SUMOylation of USP38 was promoted, whereas SENP2-mediated de-SUMOylation of USP38 suppressed the deubiquitination effects of USP38 on KLF5. Additionally, our results demonstrated that KLF5 overexpression restored the suppression of the malignant properties of LUAD cells by USP38 knockdown. SUMOylation of USP38 enhances the deubiquitination and stability of KLF5, thereby augmenting the malignant progression of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Fatores de Transcrição , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
16.
ACS Appl Mater Interfaces ; 16(3): 3232-3242, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38221726

RESUMO

Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Terapia por Captura de Nêutron de Boro/métodos , Eficiência Biológica Relativa , Nêutrons
17.
Artigo em Inglês | MEDLINE | ID: mdl-38686647

RESUMO

Nanocarriers have been researched comprehensively for the development of novel boron-containing agents in boron neutron capture therapy (BNCT). We designed and synthesized a multifunctional mesoporous silica nanoparticle (MSN)-based boron-containing agent. The latter was coated with a lipid bilayer (LB) and decorated with SP94 peptide (SFSIIHTPILPL) on the surface as SP94-LB@BA-MSN. The latter incorporated boric acid (BA) into hydrophobic mesopores, coated with an LB, and modified with SP94 peptide on the LB. SP94-LB@BA-MSN enhanced nano interface tumor-targeting ability but also prevented the premature release of drugs, which is crucial for BNCT because adequate boron content in tumor sites is required. SP94-LB@BA-MSN showed excellent efficacy in the BNCT treatment of HepG-2 cells. In animal studies with tumor-bearing mice, SP94-LB@BA-MSN exhibited a satisfactory accumulation at the tumor site. The boron content reached 40.18 ± 5.41 ppm in the tumor site 4 h after injection, which was 8.12 and 15.51 times higher than those in mice treated with boronated phenylalanine and those treated with BA. For boron, the tumor-to-normal tissue ratio was 4.41 ± 1.13 and the tumor-to-blood ratio was 5.92 ± 0.45. These results indicated that nanoparticles delivered boron to the tumor site effectively while minimizing accumulation in normal tissues. In conclusion, this composite (SP94-LB@BA-MSN) shows great promise as a boron-containing delivery agent for the treatment of hepatocellular carcinoma using BNCT. These findings highlight the potential of MSNs in the field of BNCT.

18.
Front Endocrinol (Lausanne) ; 14: 1220108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795365

RESUMO

The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.


Assuntos
Neoplasias Pulmonares , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Ubiquitinação , Ubiquitina/metabolismo , Proteínas/metabolismo , Transformação Celular Neoplásica , Descoberta de Drogas
19.
Materials (Basel) ; 16(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36984158

RESUMO

Lithium metal is one of the most promising anode materials for lithium-ion batteries; however, lithium dendrite growth hinders its large-scale development. So far, the dendrite formation mechanism is unclear. Herein, the dynamic evolution of lithium deposition in etheryl-based and ethylene carbonate (EC)-based electrolytes was obtained by combining an in situ electrochemical atomic force microscope (EC-AFM) with an electrochemical workstation. Three growth modes of lithium particles are proposed: preferential, merged, and independent growth. In addition, a lithium deposition schematic is proposed to clearly describe the morphological changes in lithium deposition. This schematic shows the process of lithium deposition, thus providing a theoretical basis for solving the problem of lithium dendrite growth.

20.
Life Sci ; 332: 122111, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734436

RESUMO

Nickel compounds are widely used in industries and daily life as important industrial products. Long-term exposure to nickel compounds has been associated with increased incidence and poor prognosis of lung cancer. However, the molecular mechanism by which exposure to nickel compounds induces the malignant phenotype of lung cancer cells remains unclear. In this study, we confirmed that nickel chloride (NiCl2) exposure promotes invasion and metastasis through IL-6/STAT3 both in vitro and vivo. Mechanistically, we found that NiCl2 mediated the transcriptional regulation of E3 ubiquitin ligase TRIM31 by SATAT3 phosphorylation, and promoted its up-regulation. Overexpression TRIM31 is an independent risk factor for lung cancer patients, and it promotes the invasion and metastasis of lung cancer cells. In addition, E3 ubiquitination ligase TRIM31 binds to its substrate TP53 protein in the RING region and accelerates TP53 protein ubiquitination and degradation. Functional recovery experiments showed that NiCl2 exposure promotes the invasion and metastasis ability of lung cancer and ubiquitination-mediated degradation of TP53 protein through the STAT3/TRIM31 axis. These findings reveal the role and mechanism of NiCl2 in lung cancer progression, indicating that STAT3 and TRIM31 may be promising targets for the treatment of lung cancer.


Assuntos
Neoplasias Pulmonares , Metástase Neoplásica , Níquel , Ubiquitina-Proteína Ligases , Humanos , Interleucina-6/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Níquel/efeitos adversos , Fator de Transcrição STAT3/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa