Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Fa Yi Xue Za Zhi ; 39(5): 447-451, 2023 Oct 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38006263

RESUMO

OBJECTIVES: To establish the menstrual blood identification model based on Naïve Bayes and multivariate logistic regression methods by using specific mRNA markers in menstrual blood detection technology combined with statistical methods, and to quantitatively distinguish menstrual blood from other body fluids. METHODS: Body fluids including 86 menstrual blood, 48 peripheral blood, 48 vaginal secretions, 24 semen and 24 saliva samples were collected. RNA of the samples was extracted and cDNA was obtained by reverse transcription. Five menstrual blood-specific markers including members of the matrix metalloproteinase (MMP) family MMP3, MMP7, MMP11, progestogens associated endometrial protein (PAEP) and stanniocalcin-1 (STC1) were amplified and analyzed by electrophoresis. The results were analyzed by Naïve Bayes and multivariate logistic regression. RESULTS: The accuracy of the classification model constructed was 88.37% by Naïve Bayes and 91.86% by multivariate logistic regression. In non-menstrual blood samples, the distinguishing accuracy of peripheral blood, saliva and semen was generally higher than 90%, while the distinguishing accuracy of vaginal secretions was lower, which were 16.67% and 33.33%, respectively. CONCLUSIONS: The mRNA detection technology combined with statistical methods can be used to establish a classification and discrimination model for menstrual blood, which can distignuish the menstrual blood and other body fluids, and quantitative description of analysis results, which has a certain application value in body fluid stain identification.


Assuntos
Líquidos Corporais , Menstruação , Feminino , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Teorema de Bayes , Modelos Logísticos , Saliva , Sêmen , Genética Forense/métodos
2.
Nanomedicine ; 43: 102555, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390525

RESUMO

The near-infrared fluorescence imaging has been integrated into the operating room to guide tumor resection, potentially reducing the positive margin rates in breast-conserving surgery (BCS). Relative to the widely used first near-infrared fluorescence imaging, imaging in the second near-infrared (NIR-II) region possesses higher contrast and deeper tissue penetration, particularly in the NIR-IIb window, offering many new opportunities for imaging-guided BCS. Here, we fabricated the c(RGDfC) functionalized erbium-based rare-earth nanoparticles (ErNPs@cRGD) with superior optical property in NIR-IIb region. Owing to deeper tissue penetration and efficient tumor targeting, ErNPs@cRGD-based NIR-IIb fluorescence imaging achieved enhanced signal-to-background ratios in tumor visualization, which was able to guide more complete tumor resection, identify multiple microtumors and distinguish malignant lesions from normal tissues in various mice models. Based on these, this NIR-IIb imaging strategy for surgical navigation can significantly reduce positive margin rates and improve prognosis, laying a foundation for the clinical resection of breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Fluorescência , Humanos , Camundongos , Nanopartículas/química , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos
3.
Chemistry ; 23(34): 8252-8261, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28421629

RESUMO

Heteroatom doping is a promising approach to improve the properties of carbon materials for customized applications. Herein, a series of Cu catalysts supported on boron-doped carbon nanotubes (Cu/xB-CNTs) were prepared for the hydrogenation of dimethyl oxalate (DMO) to ethanol. The structure and chemical properties of boron-doped catalysts were characterized by XRD, TEM, N2 O pulse adsorption, CO chemisorption, H2 temperature-programmed reduction, and NH3 temperature-programmed desorption, which revealed that doping boron into CNT supports improved the Cu dispersion, strengthened the interaction of Cu species with the CNT support, introduced more surface acid sites, and increased the surface area of Cu0 and especially Cu+ sites. Consequently, the catalytic activity and stability of the catalysts were greatly enhanced by boron doping. 100 % DMO conversion and 78.1 % ethanol selectivity could be achieved over the Cu/1B-CNTs catalyst, the ethanol selectivity of which was almost 1.7 times higher than that of the catalyst without boron doping. These results suggest that doping CNTs with boron is an efficient approach to improve the catalytic performance of CNT-based catalysts for hydrogenation of DMO. The boron-doped CNT-based catalyst with improved ethanol selectivity and catalytic stability will be helpful in the development of efficient Cu catalysts supported on non-silica materials for selective hydrogenation of DMO to ethanol.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(12): 4017-20, 2016 Dec.
Artigo em Zh | MEDLINE | ID: mdl-30243267

RESUMO

Spectrophotometric determination of the amount of zinc on the imprint left on hands by zinc coatings with 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP) as a chromogenic reagent has been studied in this paper. The effect of reaction conditions including volume and pH of buffer solution as well as the volume of chromogenic reagent on the determination has also been studied. On the optimized condition, the standard curve of zinc has been established and the amount of zinc on the imprint left on hands by zinc coatings with different contact time and time elapse has been determined separately. As the results shown, the optimized reaction condition is 4 mL of boric acid and borax buffer solution(pH 8.0), 0.2 mL of 5-Br-PADAP with the concentration of 1 g·L(-1) and 1 mL of Triton-X-100 with volume fraction of 10%. Under this circumstance, high linearity of zinc is followed between 0 and 14 µg and the regression equation of zinc is y=1.851 34x+0.002 29. The amount of zinc on the imprint left on hands by zinc coatings, ranging from 0.425 to 2.377 µg·cm(-2), increases with contact time from 10 second to 5 min and varies insignificantly from 5 to 10 min. The amount of zinc left on hands declines sharply with time elapse from 0 h to 2 h, and then slowly from 2 to 7 h. The amount of zinc within 7 h is only 0.188 µg·cm(-2), which is 90% lower than that of 0 h. Therefore, it is suggested that the trace metal detection should be conducted as soon as possible. Besides, the amount of zinc on the imprint left on hands by zinc coatings with different time elapse is not entirely comply with the intensity of imprint left by zinc coatings. This demonstrates that the amount of zinc on hands is not the only factor influencing the intensity of imprint on hands with different time elapse. Additionally, it also proves the hypothesis that zinc in the complex of zinc and protein can be captured and bonded by 5-Br-PADAP resorting to a stronger chelating capacity in the experiment for the first time. The application of the combined methods in a macro and micro view is useful for study in mechanism of influencing factors in trace metal detection, which lays foundations l for further researches.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37059012

RESUMO

Since neonicotinoid insecticides are now the most extensively used insecticides worldwide, there are increasing cases of neonicotinoid poisoning. A rapid and sensitive method was developed for the determination of ten neonicotinoid insecticides and a metabolite 6-chloronicotinic acid in human whole blood. The types and amounts of extraction solvent, salting-out agent, and adsorbent in the QuEChERS method were optimized by comparing the absolute recoveries of 11 analytes. The separation was performed on an Agilent EC18 column with the gradient elution with 0.1% formic acid in water and acetonitrile as the mobile phase. The quantification was achieved by Q Exactive orbitrap high-resolution mass spectrometry under parallel reaction monitoring scan mode. The 11 analytes showed good linearity with R2 ≥ 0.9950, LODs ranging from 0.01 µg/L to 0.30 µg/L, and LOQs from 0.05 µg/L to 1.00 µg/L. The recoveries ranged from 78.3% to 119.9% at low, medium, and high spiked concentrations of blank blood, with matrix effects ranging from 80.9% to 117.8%, inter-day RSDs from 0.7% to 6.7%, and intra-day RSDs from 2.7% to 9.8%. The method was furthermore applied to a real case of neonicotinoid insecticide poisoning to demonstrate its feasibility. The proposed method is suitable for the rapid screening of neonicotinoid insecticides in poisoned human blood in the field of forensic science, as well as monitoring of neonicotinoid insecticide residues in humans in the field of environmental safety, compensating for a lack of studies on neonicotinoid insecticide determination in biological samples.


Assuntos
Inseticidas , Resíduos de Praguicidas , Humanos , Inseticidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Neonicotinoides/análise , Extração em Fase Sólida
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 122977, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329830

RESUMO

The accurate, sensitive and portable detection of morphine is important to handle judicial cases, but remains to be a great challenge. In this work, a flexible route is presented for the accurate identification and efficient detection of trace morphine in solutions based on surface-enhanced Raman spectroscopy (SERS) and a solid substrate/chip. A gold-coated jagged silicon nanoarray (Au-JSiNA) is designed and prepared via Si-based polystyrene colloidal template-reactive ion etching and sputtering deposition of Au. Such Au-JSiNA has three-dimensional nanostructure with good structural uniformity, high SERS activity and hydrophobic surface. Adopting this Au-JSiNA as SERS chip, trace morphine in solutions could be detected and identified in both dropping and soaking ways, and the limit of detection is below 10-4 mg/mL. Importantly, such chip is especially suitable for the detection of trace morphine in aqueous solutions and even domestic sewage. The good SERS performance is attributed to the high-density nanotips and nanogaps on this chip as well as its hydrophobic surface. Additionally, the appropriate surface modification of this Au-JSiNA chip with 3-mercapto-1-propanol or 3-mercaptopropionic acid/1-(3-dimethylaminopropyl)-3-ethylcarbodiimide can further increase its SERS performances to morphine. This work provides a facile route and practical solid chip for SERS detection of trace morphine in solutions, which is significant to develop the portable and reliable instruments for on-site analysis of drugs in solutions.

7.
MedComm (2020) ; 4(3): e282, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37250146

RESUMO

In the central nervous system diseases, glioma is one of the most common malignancies around the world. Despite the recent improvements in therapies for glioma, the prognosis of some high-risk glioma remains poor. In glioma, isoliquiritigenin (ISL) is reported to have antioxidative and antitumor activities. However, the potential mechanisms between ISL and circle RNAs (circRNAs) in the glioma tumorigenesis process have not yet been reported. Here, we treated glioma cells with ISL, and circRNA expression levels were detected. Circ0030018 was found significantly downregulated by ISL. Therefore, we explored circ0030018 expression profiles and functions in glioma, finding that circ0030018 was evidently overexpressed in glioma cell lines. Colony formation, CCK-8, and transwell assay made clear that circ0030018 silencing dramatically cut down glioma growth and invasion. Moreover, ROS level was detected to find that circ0030018 silence remarkably enhanced cell oxidative stress in glioma. Mechanism studies were conducted to investigate the underlying basis of circ0030018 function in glioma, unveiling that circ0030018 realized its functions partially through the miR-1236/HER2 signaling in glioma. In conclusion, our study investigated the roles and mechanisms of the ISL on the circ0030018/miR-1236/HER2 pathway in glioma tumorigenesis and progression. Circ0030018 could act as the prospective biologic signature or therapeutic target for glioma.

8.
Se Pu ; 41(6): 497-503, 2023 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-37259874

RESUMO

Fluoroacetic acid is a highly polar poison used for rodent control. When ingested by the human body, it seriously damages nerve cells and heart tissues and even causes death by cardiac arrest or respiratory failure. Common detection methods for fluoroacetic acid include gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, both of which require complex pretreatment methods, such as derivatization. In this study, a method to determine fluoroacetic acid in human blood and urine based on accelerated solvent extraction-ion chromatography-mass spectrometry (ASE-IC-MS) was established. Two pretreatment methods, namely, acetonitrile precipitation and accelerated solvent extraction, were compared. Furthermore, the effects of different extraction conditions, such as the extraction time, extraction temperature, and number of cycles, were investigated. The most suitable chromatographic separation conditions, such as the chromatographic column, column temperature, and elution procedure, were determined, and the MS conditions, such as the collision energy (CE) and declustering potential (DP) of the ion pairs of the target compound, were investigated. Based on the experimental results, the optimal pretreatment methods and detection conditions were obtained, and reliable data were collected. Deionized water was used as the extraction solvent, and blood and urine samples were processed by accelerated solvent extractor. The supernatant was sequentially collected via centrifugal ultrafiltration and 0.22 µm membrane filtration, diluted 50 times, and then injected into the chromatographic column for detection. An Ion Pac AS20 IC column was used for isocratic elution with 15.0 mmol/L KOH solution as the eluent. The effluent was passed through a suppressor and into a triple quadrupole mass spectrometer, which was used to perform MS/MS (ESI-) in multiple reaction monitoring (MRM) mode. The quantitative ion was m/z 77.0>57.0 when the CE and DP were -15.0 eV and -20.0 V, respectively. An external standard method was used for quantitative analysis. The results showed a good linear relationship for fluoroacetic acid in the range of 0.5-500.0 µg/L (r>0.999), with limits of detection (LOD) and quantification (LOQ) of 0.14 and 0.47 µg/L, respectively. The recoveries of fluoroacetic acid in blood and urine were 93.4%-95.8% and 96.2%-98.4%, respectively. The intra-day RSDs for blood and urine were 0.8%-1.6% and 0.2%-1.0%, respectively, while the inter-day RSDs were 2.3%-3.8% and 3.9%-6.9%, respectively. Further investigation revealed that the matrix effects of this method in blood and urine, at -7.4% and -3.0%, respectively, were fairly weak. The established method was successfully applied to detect fluoroacetic acid in human blood and urine obtained from a poisoning case, and the results obtained provided crucial clues that led to swift case resolution. The efficiency of the method was significantly higher than that of conventional detection methods. In conclusion, the developed method has high sensitivity and good repeatability and is suitable for the rapid detection of fluoroacetic acid in human blood and urine. Moreover, because this method does not require derivatization, it is simple and efficient.


Assuntos
Fluoracetatos , Espectrometria de Massas em Tandem , Humanos , Análise Espectral , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão
9.
Adv Sci (Weinh) ; 10(10): e2205294, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721054

RESUMO

Breast-conserving surgery (BCS) is the predominant treatment approach for initial breast cancer. However, due to a lack of effective methods evaluating BCS margins, local recurrence caused by positive margins remains an issue. Accordingly, radiation therapy (RT) is a common modality in patients with advanced breast cancer. However, while RT also protects normal tissue and enhances tumor bed doses to improve therapeutic effects, current radiosensitizers cannot meet these urgent clinical needs. To address this, a novel self-assembled multifunctional nanoprobe (NP) gadolinium (Gd)-diethylenetriaminepentaacetic acid-human serum albumin (HSA)@indocyanine green-Bevacizumab (NPs-Bev) is synthesized to improve the efficacy of fluorescence-image-guided BCS and RT. Fluorescence image guidance of the second near infrared NP improves complete resection in tumor-bearing mice and accurately discriminates between benign and malignant mammary tissue in transgenic mice. Moreover, targeting tumors with NPs induces more reactive oxygen species under X-ray radiation therapy, which not only increases RT sensitivity, but also reduces tumor progression in mice. Interestingly, self-assembled NPs-Bev using HSA, the magnetic resonance contrast agent and Bevacizumab-targeting vascular growth factor A, which are clinically safe reagents, are safe in vitro and in vivo. Therefore, the novel self-assembled NPs provide a solid precision therapy platform to treat breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Bevacizumab/uso terapêutico , Verde de Indocianina/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121720, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987036

RESUMO

Rapid and flexible detection or accurate recognition of trace drugs is of great importance in cracking down on drug crimes, but it remains to be expected. Here, a solid chip is presented for the efficient detection and recognition of trace opioids (typically morphine) in aqueous solutions based on surface-enhanced Raman spectroscopy (SERS). Firstly, a Au-coated Si nano-cone array (Au-SNCA) is designed and fabricated via Si-based organic colloidal template etching and Au deposition. This Au-SNCA shows three-dimensional nanostructure with high densities of nanotips and deep nanogaps as well as high structural consistency, which exhibits strong SERS activity to morphine and outstanding stability. Then, such Au-SNCA is used as solid SERS chip to detect morphine in aqueous solutions. It has been demonstrated that using such solid chip, trace morphine in solutions could be recognized and detected within 1 min, and the detection limit is 10-5 mg/mL (∼10 ppb), showing rapid and sensitive detection, which is much better than the previous reports. Meanwhile, the Au-SNCA chip also can be utilized to detect trace morphine in tap water and reservoir water, the recoveries range from 90.4% to 102.4%. Such excellent SERS performance of this Au-SNCA chip is attributed to its special structure which enhances not only local electromagnetic field but also molecular adsorption. The experimental results about the effects of immersion time and concentration show that the adsorption behavior of morphine molecules on such Au-SNCA chip can be explained by the pseudo-second-order kinetic model and Freundlich adsorption mode. Moreover, the Au-SNCA chip is also suitable for the identification of morphine homologues and the broad-spectrum detection of various common drugs. This study presents a practical solid chip and a simple approach for the efficient SERS detection and recognition of trace drugs in solutions. This is of significance to on-site detect drugs in forensic science.


Assuntos
Ouro , Nanopartículas Metálicas , Analgésicos Opioides , Ouro/química , Nanopartículas Metálicas/química , Morfina , Análise Espectral Raman/métodos , Água
11.
Biomaterials ; 287: 121636, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724539

RESUMO

High quantum yield quantum dots (QDs) with the emission in the sub-second near infrared window (NIR-IIb, 1500-1700 nm) can afford higher resolution, a deeper penetration depth and zero auto-fluorescence for bio-imaging. However, low tumor accumulation, the rapid renal clearance and potential toxicity impeding their biomedical applications. Here, we report a tumor microenvironment responsive hollowed virus-bionic MnO2 nanoshell with IR1061 loading in the cavity and QDs (PbS@CdS) anchoring on the surface for precise NIR-IIb fluorescence imaging guided tumor surgery and efficient NIR-II photothermal therapy. This QDs based nanoprobe could efficiently adhere on tumor cells to realize efficient tumor tissue accumulation. NIR-IIb fluorescence of tumor margin could be successfully delineating after extracellular weak acid triggered MnO2 biodegradation for IR1061 release with remarkable NIR-IIb signal-to-noise boosting. Then, it could facilitate complete dissection of various tumor models with the assistance of NIR-IIb fluorescence imaging. Moreover, the fascinating efficacy for micro-metastasis eradication via NIR-II photothermal effects can be achieved under NIR-IIb fluorescence imaging guidance. Specifically, in combination with negligible system toxicity, our nanoprobes showed great potential as a versatile NIR-IIb fluorescent imaging platform for precise tumor surgery and tumor therapy guidance for future clinical translation.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Microambiente Tumoral , Compostos de Manganês , Óxidos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imagem Óptica/métodos
12.
MedComm (2020) ; 3(3): e136, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35711853

RESUMO

The CDK4/6-Rb axis is a crucial target of cancer therapy and several selective inhibitors of it have been approved for clinical application. However, current therapeutic efficacy evaluation mostly relies on anatomical imaging, which cannot directly reflect changes in drug targets, leading to a delay in the selection of optimal treatment. In this study, we constructed a novel fluorescent probe, CPP30-Lipo/CDKACT4, for real-time monitoring of CDK4 activity and the therapeutic efficacy of its inhibitor in HR+/HER2- breast cancer. CPP30-Lipo/CDKACT4 exhibited good optical stability and targetability. The signal of the probe in living cells decreased after CDK4 knockdown or palbociclib treatment. Moreover, the fluorescence intensity of the tumors after 7 days of palbociclib treatment was significantly lower than that before treatment, while no significant change in tumor diameter was observed under magnetic resonance imaging. Overall, we developed an innovative fluorescent probe that can monitor CDK4 activity and the early therapeutic response to CDK4 inhibitors in living cells and in vivo. It may provide a new strategy for evaluating antitumor therapeutic efficacy in a clinical context and for drug development.

13.
Crit Rev Oncol Hematol ; 176: 103746, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35752425

RESUMO

Recently, immune checkpoint therapy (ICT) represented by programmed cell death1 (PD-1) and its major ligands, programmed death ligand 1 (PD-L1), has achieved significant success. Detection of PD-L1 by immunohistochemistry (IHC) is a classic method to guide the treatment of ICT patients. However, PD-L1 expression in the tumor microenvironment is highly complex. Thus, PD-L1 IHC is inadequate to fully understand the relevance of PD-L1 levels in the whole body and their dynamics to improve therapeutic outcomes. Intriguingly, numerous studies have revealed that molecular imaging technologies could potentially meet this need. Therefore, the purpose of this narrative review is to summarize the preclinical and clinical application of ICT guided by molecular imaging technology, and to explore the future opportunities and practical difficulties of these innovations.


Assuntos
Antígeno B7-H1 , Microambiente Tumoral , Humanos , Imuno-Histoquímica , Imagem Molecular , Prognóstico
14.
Adv Sci (Weinh) ; 9(12): e2104728, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170876

RESUMO

Positive resection margin frequently exists in breast-conserving treatment (BCT) of early-stage breast cancer, and insufficient therapeutic efficacy is common during radiotherapy (RT) in advanced breast cancer patients. Moreover, a multimodal nanotherapy platform is urgently required for precision cancer medicine. Therefore, a biodegradable cyclic RGD pentapeptide/hollow virus-like gadolinium (Gd)-based indocyanine green (R&HV-Gd@ICG) nanoprobe is developed to improve fluorescence image-guided surgery and breast cancer RT efficacy. R&HV-Gd exhibits remarkably improved aqueous stability, tumor retention, and target specificity of ICG, and achieves outstanding magnetic resonance/second near-infrared (NIR-II) window multimodal imaging in vivo. The nanoprobe-based NIR-II fluorescence image guidance facilitates complete tumor resection, improves the overall mouse survival rate, and effectively discriminates between benign and malignant breast tissues in spontaneous breast cancer transgenic mice (area under the curve = 0.978; 95% confidence interval: 0.952, 1.0). Moreover, introducing the nanoprobe to tumors generated more reactive oxygen species under X-ray irradiation, improved RT sensitivity, and reduced mouse tumor progression. Notably, the nanoprobe is biodegradable in vivo and exhibits accelerated bodily clearance, which is expected to reduce the potential long-term inorganic nanoparticle toxicity. Overall, the nanoprobe provides a basis for developing precision breast cancer treatment strategies.


Assuntos
Neoplasias da Mama , Nanopartículas , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Feminino , Gadolínio , Humanos , Verde de Indocianina , Margens de Excisão , Camundongos , Cirurgia Assistida por Computador/métodos
15.
Int J Nanomedicine ; 17: 1343-1360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345784

RESUMO

Purpose: Tumor-free surgical margin is crucial but challenging in breast-conserving surgery (BCS). Fluorescence imaging is a promising strategy for surgical navigation that can reliably assist the surgeon with visualization Of the tumor in real-time. Notably, finding an optimized fluorescent probe has been a challenging research topic. Herein, we developed a novel near-infrared (NIR) fluorescent probe based on tailored Hepatitis B Core virus-like protein (HBc VLP) and presented the preclinical imaging-guided surgery. Methods: The RGD-HBc160 VLP was synthesized by genetic engineering followed encapsulation of ICG via disassembly-reassembly. The applicability of the probe was tested for cell and tissue binding capacities through cell-based plate assays, xenograft mice model, and MMTV-PyVT mammary tumor transgenic mice. Subsequently, the efficacy of RGD-HBc160/ICG-guided surgery was evaluated in an infiltrative tumor-bearing mouse model. The protein-induced body's immune response was further assessed. Results: The prepared RGD-HBc160/ICG showed outstanding integrin αvß3 targeting ability in vitro and in vivo. After intravenous administration of probe, the fluorescence guidance facilitated more complete tumor resection and improved overall survival Of the infiltrative tumor-bearing mice. The probe also showed the excellent capability to differentiate between benign and malignant breast tissues in the mammary tumor transgenic mice. Interestingly, the ingenious tailoring of HBc VLP could not only endow its tumor-targeting ability towards integrin αvß3 but also significantly reduce the humoral and cellular immune response. Conclusion: The RGD-HBc160/ICG holds promise as an effective tool to delineate tumor margin. These results have translational potential to achieve margin-negative resection and improve the stratification of patients for a potentially curative.


Assuntos
Neoplasias da Mama , Antígenos do Núcleo do Vírus da Hepatite B , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Fluorescência , Humanos , Integrina alfaVbeta3/metabolismo , Camundongos
16.
Sci Total Environ ; 784: 147258, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088077

RESUMO

Rice husk is an agricultural residue in rice producing process with a worldwide annual output of more than 190 million tons. To investigate the possibility of disposal method, rice husk ash (RHA) derived from the rice husk residue was treated as a support material thus synthesizing a Co-based heterogeneous catalyst for peroxymonosulfate activation. The interconnected architecture of the Co3O4 nanoflakes grown vertically on the surface of RHA provided high surface area and structure stability. The as-synthesized heterogeneous catalyst exhibited enhanced ability for peroxymonosulfate activation towards Rhodamine B degradation. Degradation efficiency of Rhodamine B achieved 96.3% within 60 min by using Co3O4-0.5 RHA catalyst, while only 44.1% Rhodamine B was degraded for bare Co3O4. The effects of pH, catalyst dosage, peroxymonosulfate dosage, Rhodamine B concentration, inorganic ions and temperature were evaluated. Radical scavenging experiments revealed that 1O2 and O2•- other than SO4•- and •OH were the main active species. Furthermore, the addition of rice husk ash proved to be capable of reducing the dissolution of Co and extended the lifetime of the catalyst. This study elucidated a new opportunity for both utilizing agricultural residue and reducing contaminants in wastewater.

17.
Forensic Sci Int ; 318: 110562, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33168420

RESUMO

Considering the high use of inkjet printing in forgery cases, the classification of inkjet printing is particularly important in questioned document examination. In this work, a universal GC-MS method has been developed to analyze various ink components extracted from inkjet printouts. The results indicated that several components detected and identified across 195 inks could be used to distinguish printer manufacturers. A trend of decreasing solvent concentration over time was observed through the continuous monitoring of 7 samples. The results shown that this method is useful for forensic classification purposes, and can be useful regardless effects of storage environment, paper or printer. Furthermore, the application of this method in the analysis of counterfeit banknotes illustrated its feasibility and applicability.

18.
Bioresour Bioprocess ; 8(1): 99, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-38650206

RESUMO

Hydrochar a carbon-rich material resulting from hydrothermal carbonization of biomass, has received substantial attention because of its potential application in various areas such as carbon sequestration, bioenergy production and environmental amelioration. A series of hydrochars were prepared by metal chloride-assisted hydrothermal carbonization of rice husk and characterized by elemental analysis, zeta potential, X-ray diffraction, Brunauer-Emmett-Teller measurements, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and scanning electron microscopy. The results reveal that the prepared hydrochars have carbon contents ranging from 45.01 to 58.71%, BET specific areas between 13.23 and 45.97 m2/g, and rich O-containing functional groups on the surfaces. The metal chlorides added in the feedwater could improve the degree of carbonization and show significant effects on the physical, chemical and adsorption properties of the hydrochars. The adsorption of the selected organics on the hydrochars is a spontaneous and physisorption-dominated process. The hydrochars possess larger adsorption capacities for 2-naphthol than for berberine hydrochloride and Congo red, and the modeling maximum adsorption capacities of 2-naphthol are in the range of 170.1-2680 mg/g. The adsorption equilibrium could be accomplished in 10, 40 and 30 min for 2-naphthol, berberine hydrochloride and Congo red, respectively. These results suggest metal chloride-assisted hydrothermal carbonization a promising method for converting biomass waste into effective adsorbents for wastewater treatment.

19.
Small Methods ; 5(3): e2001066, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927825

RESUMO

Near-infrared (NIR) fluorescence imaging is an emerging noninvasive imaging modality, with unique advantages in guiding tumor resection surgery, thanks to its high sensitivity and instantaneity. In the past decade, studies on the conventional NIR window (NIR-I, 750-900 nm) have gradually focused on the second NIR window (NIR-II, 1000-1700 nm). With its reduced light scattering, photon absorption, and auto-fluorescence qualities, NIR-II fluorescence imaging significantly improves penetration depths and signal-to-noise ratios in bio-imaging. Recently, several studies have applied NIR-II imaging to navigating cancer surgery, including localizing cancers, assessing surgical margins, tracing lymph nodes, and mapping important anatomical structures. These studies have exemplified the significant prospects of this new approach. In this review, several NIR-II fluorescence agents and some of the complex applications for guiding cancer surgeries are summarized. Future prospects and the challenges of clinical translation are also discussed.


Assuntos
Neoplasias , Cirurgia Assistida por Computador , Corantes Fluorescentes/química , Humanos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Fótons , Cirurgia Assistida por Computador/métodos
20.
Front Oncol ; 11: 628814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249678

RESUMO

PURPOSE: The basic helix-loop-helix transcription factor (bHLH) transcription factor Twist1 plays a key role in embryonic development and tumorigenesis. p53 is a frequently mutated tumor suppressor in cancer. Both proteins play a key and significant role in breast cancer tumorigenesis. However, the regulatory mechanism and clinical significance of their co-expression in this disease remain unclear. The purpose of this study was to analyze the expression patterns of p53 and Twist1 and determine their association with patient prognosis in breast cancer. We also investigated whether their co-expression could be a potential marker for predicting patient prognosis in this disease. METHODS: Twist1 and mutant p53 expression in 408 breast cancer patient samples were evaluated by immunohistochemistry. Kaplan-Meier Plotter was used to analyze the correlation between co-expression of Twist1 and wild-type or mutant p53 and prognosis for recurrence-free survival (RFS) and overall survival (OS). Univariate analysis, multivariate analysis, and nomograms were used to explore the independent prognostic factors in disease-free survival (DFS) and OS in this cohort. RESULTS: Of the 408 patients enrolled, 237 (58%) had high mutant p53 expression. Two-hundred twenty patients (53.9%) stained positive for Twist1, and 188 cases were Twist1-negative. Furthermore, patients that co-expressed Twist1 and mutant p53 (T+P+) had significantly advanced-stage breast cancer [stage III, 61/89 T+P+ (68.5%) vs. 28/89 T-P- (31.5%); stage II, 63/104 T+P+ (60.6%)vs. 41/104 T-P- (39.4%)]. Co-expression was negatively related to early clinical stage (i.e., stages 0 and I; P = 0.039). T+P+ breast cancer patients also had worse DFS (95% CI = 1.217-7.499, P = 0.017) and OS (95% CI = 1.009-9.272, P = 0.048). Elevated Twist1 and mutant p53 expression predicted shorter RFS in basal-like patients. Univariate and multivariate analysis identified three variables (i.e., lymph node involvement, larger tumor, and T+P+) as independent prognostic factors for DFS. Lymph node involvement and T+P+ were also independent factors for OS in this cohort. The total risk scores and nomograms were reliable for predicting DFS and OS in breast cancer patients. CONCLUSIONS: Our results revealed that co-expression of mutant p53 and Twist1 was associated with advanced clinical stage, triple negative breast cancer (TNBC) subtype, distant metastasis, and shorter DFS and OS in breast cancer patients. Furthermore, lymph nodes status and co-expression of Twist1 and mutant p53 were classified as independent factors for DFS and OS in this cohort. Co-evaluation of mutant p53 and Twist1 might be an appropriate tool for predicting breast cancer patient outcome.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa