Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 204: 106039, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277366

RESUMO

Tartary buckwheat (Fagopyrum tataricum) field weeds are rich in species, with many weeds causing reduced quality, yield, and crop failure. The selection of herbicide-resistant Tartary buckwheat varieties, while applying low-toxicity and efficient herbicides as a complementary weed control system, is one way to improve Tartary buckwheat yield and quality. Therefore, the development of herbicide-resistant varieties is important for the breeding of Tartary buckwheat. In this experiment, 50 mM ethyl methyl sulfonate solution was used to treat Tartary buckwheat seeds (M1) and then planted in the field. Harvested seeds (M2) were planted in the experiment field of Guizhou University, and when seedlings had 5-7 leaves, the seedlings were sprayed with 166 mg/L tribenuron-methyl (TBM). A total of 15 resistant plants were obtained, of which three were highly resistant. Using the homologous cloning method, an acetolactate synthase (ALS) gene encoding 547 amino acids was identified in Tartary buckwheat. A GTG (valine) to GGA (glycine) mutation (V409G) occurred at position 409 of the ALS gene in the high tribenuron-methyl resistant mutant sm113. The dm36 mutant harbored a double mutation, a deletion mutation at position 405, and a GTG (valine) to GGA (glycine) mutation (V411G) at position 411. The dm110 mutant underwent a double mutation: an ATG (methionine) to AGG (arginine) mutation (M333R) at position 333 and an insertion mutation at position 372. The synthesis of Chl a, Chl b, total Chl, and Car was significantly inhibited by TBM treatment. TBM was more efficient at suppressing the growth of wild-type plants than that of mutant plants. Antioxidant enzyme activities such as ascorbate peroxidase, peroxidase, and superoxide dismutase were significantly higher in resistant plants than in wild-type after spraying with TBM; malondialdehyde content was significantly lower than in wild-type plants after spraying with TBM. Plants with a single-site mutation in the ALS gene could survive, but their growth was affected by herbicide application. In contrast, plants with dual-site mutations in the ALS gene were not affected, indicating that plants with dual-site mutations in the ALS gene showed higher levels of resistance than plants with a single-site mutation in the ALS gene.


Assuntos
Acetolactato Sintase , Sulfonatos de Arila , Fagopyrum , Resistência a Herbicidas , Herbicidas , Mutação , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Fagopyrum/genética , Fagopyrum/efeitos dos fármacos , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Sulfonatos de Arila/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791554

RESUMO

Rose roxburghii, a horticulturally significant species within the Rosa genus of the Rosaceae family, is renowned for its abundance of secondary metabolites and ascorbate, earning it the title 'king of vitamin C'. Despite this recognition, the mechanisms underlying the biosynthesis and regulation of triterpenoid compounds in R. roxburghii remain largely unresolved. In this study, we conducted high-performance liquid chromatography profiling across various organs of R. roxburghii, including fruit, root, stem, and leaves, revealing distinct distributions of triterpenoid compounds among different plant parts. Notably, the fruit exhibited the highest total triterpenoid content, followed by root and stem, with leaf containing the lowest levels, with leaf containing the lowest levels. Transcriptomic analysis unveiled preferential expression of members from the cytochrome P450 (CYP) and glycosyltransferase (UGT) families, likely contributing to the higher accumulation of both ascorbate and triterpenoid compounds in the fruits of R. roxburghii compared to other tissues of R. roxburghii. Transcriptomic analysis unveiled a potential gene network implicated in the biosynthesis of both ascorbate and triterpenoid compounds in R. roxburghii. These findings not only deepen our understanding of the metabolic pathways in this species but also have implications for the design of functional foods enriched with ascorbate and triterpenoids in R. roxburghii.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Rosa , Triterpenos , Triterpenos/metabolismo , Perfilação da Expressão Gênica/métodos , Rosa/genética , Rosa/metabolismo , Transcriptoma , Ácido Ascórbico/metabolismo , Frutas/metabolismo , Frutas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
3.
J Environ Manage ; 360: 121163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749130

RESUMO

In this study, the effects of micro-positive pressure formed by covering with a semipermeable membrane in the heating phase of dairy manure composting on greenhouse gas emissions and the mechanism of reducing methane emissions by the archaeal community were investigated. A large-scale experiment was conducted with semipermeable membrane-covered composting (SMC), forced aeration composting (FAC), and traditional static composting (TSC) groups. The results showed that the oxygen concentration and methanogen abundance were key factors in regulating methane emissions. In the heating phase of SMC, the micro-positive pressure could enhance the O2 utilization rate and heating rate, resulting in Methanobrevibacter and Methanobacterium greatly decreasing, and the abundance of mcrA decreased by 90.03%, while that of pmoA did not increase. Compared with FAC and TSC, the cumulative methane emissions in SMC decreased by 51.75% and 96.04%, respectively. Therefore, the micro-positive pressure could effectively reduce greenhouse gas emissions by inhibiting the growth of methanogens.


Assuntos
Archaea , Compostagem , Gases de Efeito Estufa , Esterco , Metano , Compostagem/métodos , Gases de Efeito Estufa/análise , Metano/metabolismo , Archaea/metabolismo , Animais , Indústria de Laticínios
4.
J Agric Food Chem ; 72(40): 22369-22384, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39329331

RESUMO

Jasmonic acid (JA) is an endogenous phytohormone that regulates plant physiological metabolism and stress response processes, either independently or through hormone crosstalk. Our phytohormone assay and transcriptome-metabolome analysis revealed the key genes and metabolites involved in the JA pathway in response to 0-250 µM cadmium (Cd) in potato seedlings. Transcriptome gene set enrichment and gene ontology analysis indicated that JA-related genes were significantly enriched. Specifically, members from the StOPR and StJAZ gene families showed pronounced responses to Cd stress and methyl jasmonate treatment. As a negative regulatory transcription factor of the JA signaling pathway, StJAZ14 exhibited a decreasing trend under Cd stress. Yeast two-hybrid assay identified an interaction between StJAZ14 and StBZR1, which is located on the brassinolide pathway. In addition to unveiling the critical role of the JA pathway in regulating potato response to Cd stress, the functional mechanism was preliminarily explored.


Assuntos
Cádmio , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Transdução de Sinais , Solanum tuberosum , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Cádmio/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos , Estresse Fisiológico , Multiômica
5.
J Hazard Mater ; 480: 135828, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39321477

RESUMO

Heavy metal stress threatens plant growth and productivity. In this study, we investigated the effects of CuSO4 and ZnSO4 toxicity on sorghum seedlings, focusing on their impact on biomass, germination rates, growth parameters, antioxidant enzyme activities, gene expression profiles, and stress resistance mechanisms. As a result, eight sorghum superoxide dismutase (SOD) genes were identified, and their evolutionary relationships with cis-acting regulatory elements and their expressional patterns were evaluated. Integrating transcriptomic data revealed a key SOD member SbCSD1 that might contribute to plant abiotic stress resistance. Furthermore, SbCSD1 overexpression enhanced plant tolerance to CuSO4 and ZnSO4 stress by regulating SOD activity and interacting with copper chaperone for superoxide dismutase 1 (CCS1) in the plant nucleus and cytoplasm. Meanwhile, silencing CCS1 in SbCSD1-overexpressing plants revealed that SbCSD1 and CCS1 synergistically contribute to Cu stress tolerance. By integrating transcriptomic and genetic data, herein we provide novel insights into the orchestration of plant responses to heavy-metal stress in sorghum by SOD.

6.
Front Genet ; 13: 832898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368684

RESUMO

Chlorophyll content of the flag leaf is an important trait for drought resistance in wheat under drought stress. Understanding the regulatory mechanism of flag leaf chlorophyll content could accelerate breeding for drought resistance. In this study, we constructed a recombinant inbred line (RIL) population from a cross of drought-sensitive variety DH118 and drought-resistant variety Jinmai 919, and analyzed the chlorophyll contents of flag leaves in six experimental locations/years using the Wheat90K single-nucleotide polymorphism array. A total of 29 quantitative trait loci (QTLs) controlling flag leaf chlorophyll were detected with contributions to phenotypic variation ranging from 4.67 to 23.25%. Twelve QTLs were detected under irrigated conditions and 18 were detected under dryland (drought) conditions. Most of the QTLs detected under the different water regimes were different. Four major QTLs (Qchl.saw-3B.2, Qchl.saw-5A.2, Qchl.saw-5A.3, and Qchl.saw-5B.2) were detected in the RIL population. Qchl.saw-3B.2, possibly more suitable for marker-assisted selection of genotypes adapted to irrigated conditions, was validated by a tightly linked kompetitive allele specific PCR (KASP) marker in a doubled haploid population derived from a different cross. Qchl.saw-5A.3, a novel stably expressed QTL, was detected in the dryland environments and explained up to 23.25% of the phenotypic variation, and has potential for marker-assisted breeding of genotypes adapted to dryland conditions. The stable and major QTLs identified here add valuable information for understanding the genetic mechanism underlying chlorophyll content and provide a basis for molecular marker-assisted breeding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa