Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667787

RESUMO

Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.


Assuntos
Região CA1 Hipocampal , Gerbillinae , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Sefarose/análogos & derivados , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Polissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo
2.
Biol Pharm Bull ; 46(10): 1394-1402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779040

RESUMO

Dimenhydrinate, an H1 receptor antagonist, is generally used for the prevention and treatment of nausea and vomiting. However, cardiac arrhythmias have been reported to be associated with the overdose of histamine H1 receptor antagonists, indicating the probable effect of antihistamines on ion channels. By using a two-microelectrode voltage clamp, we have herein studied the electrophysiological effects of dimenhydrinate on the human Kv1.5 channel in the Xenopus oocyte expression system. Dimenhydrinate acutely and reversibly suppressed the amplitudes of the peak and the steady-state current, within 6 min. The inhibitory effect of dimenhydrinate on the peak and the steady-state Kv1.5 currents increased progressively from -10 to +50 mV. At each test voltage, the drug suppressed both the peak and the steady-state currents to a similar extent. When the oocytes were stimulated at the rates of 5- and 30-s intervals, dimenhydrinate-induced a use-dependent blockade of the human Kv1.5 channel. Dimenhydrinate expedited the timecourse of the Kv1.5 channel activation more effectively than the timecourse of its inactivation. However, the activation and inactivation curves of the channel were not altered by the H1 receptor antagonist. In conclusion, we found that dimenhydrinate inhibits the human Kv1.5 channel by changing the channel's activation mode, thereby possibly increasing the possibility of triggering cardiac arrhythmias and affecting atrial fibrillation.


Assuntos
Dimenidrinato , Humanos , Dimenidrinato/metabolismo , Dimenidrinato/farmacologia , Fenômenos Eletrofisiológicos , Antagonistas dos Receptores Histamínicos H1/farmacologia , Oócitos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia
3.
COPD ; 20(1): 109-118, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36882376

RESUMO

Aberrant communication in alveolar epithelium is a major feature of inflammatory response for the airway remodeling leading to chronic obstructive pulmonary disease (COPD). In this study, we investigated the effect of protein transduction domains (PTD) conjugated Basic Fibroblast Growth Factor (FGF2) (PTD-FGF2) in response to cigarette smoke extract (CSE) in MLE-12 cells and porcine pancreatic elastase (PPE)-induced emphysematous mice. When PPE-induced mice were intraperitoneally treated with 0.1-0.5 mg/kg PTD-FGF2 or FGF2, the linear intercept, infiltration of inflammatory cells into alveoli and pro-inflammatory cytokines were significantly decreased. In western blot analysis, phosphorylated protein levels of c-Jun N-terminal Kinase 1/2 (JNK1/2), extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases (MAPK) were decreased in PPE-induced mice treated PTD-FGF2. In MLE-12 cells, PTD-FGF2 treatment decreased reactive oxygen species (ROS) production and further decreased Interleukin-6 (IL-6) and IL-1b cytokines in response to CSE. In addition, phosphorylated protein levels of ERK1/2, JNK1/2 and p38 MAPK were reduced. We next determined microRNA expression in the isolated exosomes of MLE-12 cells. In reverse transcription-polymerase chain reaction (RT-PCR) analysis, level of let-7c miRNA was significantly increased while levels of miR-9 and miR-155 were decreased in response to CSE. These data suggest that PTD-FGF2 treatment plays a protective role in regulation of let-7c, miR-9 and miR-155 miRNA expressions and MAPK signaling pathways in CSE-induced MLE-12 cells and PPE-induced emphysematous mice.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Suínos , Elastase Pancreática , Fator 2 de Crescimento de Fibroblastos/genética , Células Epiteliais Alveolares , Enfisema Pulmonar/induzido quimicamente , Citocinas/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445113

RESUMO

Nuclear factor erythroid 2-related factor (Nrf2) is a transcriptional activator of the cell protection gene that binds to the antioxidant response element (ARE). Therefore, Nrf2 protects cells and tissues from oxidative stress. Normally, Kelch-like ECH-associated protein 1 (Keap1) inhibits the activation of Nrf2 by binding to Nrf2 and contributes to Nrf2 break down by ubiquitin proteasomes. In moderate oxidative stress, Keap1 is inhibited, allowing Nrf2 to be translocated to the nucleus, which acts as an antioxidant. However, under unusually severe oxidative stress, the Keap1-Nrf2 mechanism becomes disrupted and results in cell and tissue damage. Oxide-containing atmospheric environment generally contributes to the development of respiratory diseases, possibly leading to the failure of the Keap1-Nrf2 pathway. Until now, several studies have identified changes in Keap1-Nrf2 signaling in models of respiratory diseases, such as acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma. These studies have confirmed that several Nrf2 activators can alleviate symptoms of respiratory diseases. Thus, this review describes how the expression of Keap1-Nrf2 functions in different respiratory diseases and explains the protective effects of reversing this expression.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Doenças Respiratórias/metabolismo , Animais , Antioxidantes/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
5.
Biochem Biophys Res Commun ; 533(3): 313-318, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958247

RESUMO

Formyl peptide receptors (FPRs) are mainly expressed on leucocytes and sense microbe-associated molecular pattern (MAMP) molecules, thereby regulating leukocyte chemotaxis and activation. The formyl peptide receptor 2 (FPR2) selective agonist WKYMVm (Trp-Lys-Met-Val-D-Met) has shown potent pro-angiogenic, anti-inflammatory, and anti-apoptotic properties. In this study, we investigated whether WKYMVm exhibits bactericidal activity during neutrophil accumulation in acute lung injury (ALI) in mice and determined its cellular signaling pathways in HL-60 neutrophil-like cells. A daily intraperitoneal treatment of ALI mice with WKYMVm (2.5- and 5 mg/kg/d) daily over four days decreased the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1ß, while it increased the MPO and NO release by differentiated HL-60 neutrophil-like cells. The IRF1 level and STAT1 phosphorylation at S727 were increased in the lungs of mice with ALI treated with WKYMVm. Lung histology induced by ALI was unaffected by treatment with WKYMVm. In vitro, WKYMVm increased MPO, NO, and SOD activity, as well as IRF1 and STAT1 phosphorylation at Ser727. Taken together, our data suggest therapeutic potential of WKYMVm, via FPR2-dependent regulation of STAT1/IRF1, in ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios não Esteroides/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Fator Regulador 1 de Interferon/genética , Oligopeptídeos/farmacologia , Fator de Transcrição STAT1/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Regulação da Expressão Gênica , Células HL-60 , Humanos , Fator Regulador 1 de Interferon/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peroxidase/genética , Peroxidase/imunologia , Fosforilação , Fator de Transcrição STAT1/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
6.
Toxicol Appl Pharmacol ; 403: 115153, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717242

RESUMO

We investigated the vasodilatory effects of empagliflozin (a sodium-glucose co-transporter 2 inhibitor) and the underlying mechanisms using rabbit aorta. Empagliflozin induced vasodilation in a concentration-dependent manner independently of the endothelium. Likewise, pretreatment with the nitric oxide synthase inhibitor L-NAME or the SKca inhibitor apamin together with the IKca inhibitor TRAM-34 did not impact the vasodilatory effects of empagliflozin. Pretreatment with the adenylyl cyclase inhibitor SQ22536 or a guanylyl cyclase inhibitor ODQ or a protein kinase A (PKA) inhibitor KT5720 also did not alter the vasodilatory response of empagliflozin. However, the vasodilatory effects of empagliflozin were significantly reduced by pretreatment with the protein kinase G (PKG) inhibitor KT5823. Although application of the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline, or inwardly rectifying K+ (Kir) channel inhibitor Ba2+ did not impact the vasodilatory effects of empagliflozin, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-AP reduced the vasodilatory effects of empagliflozin. Pretreatment with DPO-1 (Kv1.5 channel inhibitor), guangxitoxin (Kv2.1 channel inhibitor), or linopirdine (Kv7 channel inhibitor) had little effect on empagliflozin-induced vasodilation. Application of nifedipine (L-type Ca2+ channel inhibitor) or thapsigargin (sarco-endoplasmic reticulum Ca2+-ATPase pump inhibitor) did not impact empagliflozin-induced vasodilation. Therefore, empagliflozin induces vasodilation by activating PKG and Kv channels.


Assuntos
Compostos Benzidrílicos/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glucosídeos/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Vasodilatação/efeitos dos fármacos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Compostos Benzidrílicos/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/química , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Estrutura Molecular , Coelhos , Inibidores do Transportador 2 de Sódio-Glicose/química
7.
J Appl Toxicol ; 40(9): 1297-1305, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32285496

RESUMO

Iloperidone, a second-generation atypical antipsychotic drug, is widely used in the treatment of schizophrenia. However, the side-effects of iloperidone on vascular K+ channels remain to be determined. Therefore, we explored the effect of iloperidone on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells using the whole-cell patch-clamp technique. Iloperidone inhibited vascular Kv channels in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50 ) of 2.11 ± 0.5 µM and a Hill coefficient of 0.68 ± 0.03. Iloperidone had no effect on the steady-state inactivation kinetics. However, it shifted the steady-state activation curve to the right, indicating that iloperidone inhibited Kv channels by influencing the voltage sensors. Application of 20 repetitive depolarizing pulses (1 and 2 Hz) progressively increased the inhibition of the Kv current in the presence of iloperidone. Furthermore, iloperidone increased the recovery time constant from Kv channel inactivation, suggesting that iloperidone-induced inhibition of Kv channels is use (state)-dependent. Pretreatment with a Kv1.5 inhibitor (diphenyl phosphine oxide 1 [DPO-1]) inhibited the Kv current to a level similar to that with iloperidone alone. However, pretreatment with a Kv2.1 or Kv7.X inhibitor (guangxitoxin or linopirdine) did not affect the inhibitory effect of iloperidone on Kv channels. Therefore, iloperidone directly inhibits Kv channels in a concentration- and use (state)-dependent manner independently of its antagonism of serotonin and dopamine receptors. Furthermore, the primary target of iloperidone is the Kv1.5 subtype.


Assuntos
Antipsicóticos/toxicidade , Vasos Coronários/efeitos dos fármacos , Isoxazóis/toxicidade , Potenciais da Membrana/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Piperidinas/toxicidade , Canais de Ânion Dependentes de Voltagem/efeitos dos fármacos , Antipsicóticos/uso terapêutico , Bloqueadores dos Canais de Potássio , Esquizofrenia/tratamento farmacológico
8.
J Cell Physiol ; 234(5): 6854-6864, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30387132

RESUMO

Laurus nobilis Linn. (Lauraceae), commonly known as Bay, has been used as a traditional medicine in the Mediterranean and Europe to treat diverse immunological disorders. Although the effects of L. nobilis on immunosuppression have been reported, the detailed underlying mechanism remains unclear. In this study, to elucidate the anti-inflammatory mechanism of L. nobilis, we examined the effect of L. nobilis leaf extract on inflammasome activation in mouse bone marrow-derived macrophages. L. nobilis leaf extract inhibited NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation, which was associated with caspase-1 activation, interleukin-1ß secretion, and apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome complex formation. We also observed that 1,8-cineole, the major component of L. nobilis extract, consistently suppressed NLRP3 inflammasome activation. Furthermore, L. nobilis leaf extract attenuated the in vivo expression of proinflammatory cytokines in an acute lung injury mouse model. Our results provide the first evidence that L. nobilis leaf extract modulates inflammatory signaling by suppressing inflammasome activation.


Assuntos
Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lauraceae/química , Laurus/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Caspase 1/metabolismo , Linhagem Celular , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
9.
FASEB J ; 31(5): 2076-2089, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28148566

RESUMO

The receptor for advanced glycan end products (RAGE) has been identified as a susceptibility gene for chronic obstructive pulmonary disease (COPD) in genome-wide association studies (GWASs). However, less is known about how RAGE is involved in the pathogenesis of COPD. To determine the molecular mechanism by which RAGE influences COPD in experimental COPD models, we investigated the efficacy of the RAGE-specific antagonist FPS-ZM1 administration in in vivo and in vitro COPD models. We injected elastase intratracheally and the RAGE antagonist FPS-ZM1 in mice, and the infiltrated inflammatory cells and cytokines were assessed by ELISA. Cellular expression of RAGE was determined in protein, serum, and bronchoalveolar lavage fluid of mice and lungs and serum of human donors and patients with COPD. Downstream damage-associated molecular pattern (DAMP) pathway activation in vivo and in vitro and in patients with COPD was assessed by immunofluorescence staining, Western blot analysis, and ELISA. The expression of membrane RAGE in initiating the inflammatory response and of soluble RAGE acting as a decoy were associated with up-regulation of the DAMP-related signaling pathway via Nrf2. FPS-ZM1 administration significantly reversed emphysema in the lung of mice. Moreover, FPS-ZM1 treatment significantly reduced lung inflammation in Nrf2+/+ , but not in Nrf2-/- mice. Thus, our data indicate for the first time that RAGE inhibition has an essential protective role in COPD. Our observation of RAGE inhibition provided novel insight into its potential as a therapeutic target in emphysema/COPD.-Lee, H., Park, J.-R., Kim, W. J., Sundar, I. K., Rahman, I., Park, S.-M., Yang. S.-R. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling.


Assuntos
Elastase Pancreática/farmacologia , Enfisema Pulmonar/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Animais , Citocinas/metabolismo , Humanos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/induzido quimicamente , Regulação para Cima
10.
Korean J Physiol Pharmacol ; 21(2): 161-168, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28280409

RESUMO

Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.

11.
Clin Exp Pharmacol Physiol ; 43(9): 808-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27218229

RESUMO

This study investigated the alteration of voltage-dependent K(+) (Kv) channels in mesenteric arterial smooth muscle cells from control (Long-Evans Tokushima Otsuka [LETO]) and diabetic (Otsuka Long-Evans Tokushima Fatty [OLETF]) rats during the early and chronic phases of diabetes. We demonstrated alterations in the mesenteric Kv channels during the early and chronic phase of diabetes using the patch-clamp technique, the arterial tone measurement system, and RT-PCR in Long-Evans Tokushima (LETO; for control) and Otsuka Long-Evans Tokushima Fatty (OLETF; for diabetes) type 2 diabetic model rats. In the early phase of diabetes, the amplitude of mesenteric Kv currents induced by depolarizing pulses was greater in OLETF rats than in LETO rats. The contractile response of the mesenteric artery induced by the Kv inhibitor, 4-aminopyridine (4-AP), was also greater in OLETF rats. The expression of most Kv subtypes- including Kv1.1, Kv1.2, Kv1.4, Kv1.5, Kv1.6, Kv2.1, Kv3.2, Kv4.1, Kv4.3, Kv5.1, Kv6.2, Kv8.1, Kv9.3, and Kv10.1-were increased in mesenteric arterial smooth muscle from OLETF rats compared with LETO rats. However, in the chronic phase of diabetes, the Kv current amplitude did not differ between LETO and OLETF rats. In addition, the 4-AP-induced contractile response of the mesenteric artery and the expression of Kv subtypes did not differ between the two groups. The increased Kv current amplitude and Kv channel-related contractile response were attributable to the increase in Kv channel expression during the early phase of diabetes. The increased Kv current amplitude and Kv channel-related contractile response were reversed during the chronic phase of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Artérias Mesentéricas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Doença Aguda , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Doença Crônica , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Ratos , Vasoconstrição/efeitos dos fármacos
12.
Cell Tissue Res ; 359(3): 767-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25501896

RESUMO

Multipotent perivascular cells (PVCs) have recently gained attention as an alternative source for cell-based regenerative medicine. Because of their rarity in human tissues, the development of efficient methods to isolate and expand PVCs from various fetal and adult tissues is necessary to obtain a clinically relevant number of cells that maintain progenitor potency. We report a simple non-enzymatic isolation (NE) method of PVCs from human umbilical cord (HUC) and compare its efficiency with the conventional collagenase treatment method (CT) in terms of proliferation, immunophenotype, clonogenic capacity, and differentiation potential. Cells isolated by NE expressed the accepted surface marker profile of PVCs and possessed multilineage differentiation potential. Whereas both methods provided similar patterns or levels of immunophenotypes and proliferation, PVCs obtained by NE maintained a higher level of CD146(+) frequency compared with that of CT over passages and displayed greater in vitro osteogenic differentiation potential and clonogenic capacity than CT-PVCs. We assess the potential of various exogenous factors to boost the proliferation of NE- and CT-PVCs in vitro. Supplementation of basic fibroblast growth factor (bFGF) provided optimal conditions that significantly enhanced their proliferation rate. This treatment drove the cells into S phase and increased the proportion of stage-specific antigen-4-positive population without altering other immunophenotypes. Thus, the NE method with bFGF supplementation offers an alternative way for obtaining sufficient numbers of HUCPVCs that have good clonogenic and differentiation potential and that are applicable at therapeutic doses for regenerative medicine.


Assuntos
Separação Celular/métodos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Antígenos Embrionários Estágio-Específicos/metabolismo , Cordão Umbilical/citologia , Adulto , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Clonais , Colagenases/metabolismo , Demografia , Feminino , Humanos , Osteogênese/efeitos dos fármacos
13.
Cell Tissue Bank ; 16(2): 209-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25163610

RESUMO

Recent studies have reported that stem cells can be isolated from a wide range of tissues including bone marrow, fatty tissue, adipose tissue and placenta. Moreover, several studies also suggest that skin dermis could serve as a source of stem cells, but are of unclear phenotype. Therefore, we isolated and investigated to determine the potential of stem cell within human skin dermis. We isolated cells from human dermis, termed here as human dermis-derived mesenchymal stem cells (hDMSCs) which is able to be isolated by using explants culture method. Our method has an advantage over the enzymatic method as it is easier, less expensive and less cell damage. hDMSCs were maintained in basal culture media and proliferation potential was measured. hDMSCs were highly proliferative and successfully expanded with no additional growth factor. In addition, hDMSCs revealed normal karyotype and expressed high levels of CD90, CD73 and CD105 while did not express the surface markers for CD34, CD45 and HLA-DR. Also, we confirmed that hDMSCs possess the capacity to differentiate into multiple lineage including adipocyte, osteocyte, chondrocyte and precursor of hepatocyte lineage. Considering these results, we suggest that hDMSCs might be a valuable source of stem cells and could potentially be a useful source of clinical application.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Diferenciação Celular/fisiologia , Separação Celular , Derme/citologia , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Separação Celular/métodos , Condrócitos/citologia , Humanos , Fenótipo , Células-Tronco/citologia
14.
Reprod Fertil Dev ; 26(5): 682-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23735658

RESUMO

Small proline-rich protein 2a (Sprr2a) is one of the structural components of the cornified keratinocyte cell envelope that contributes to form a protective barrier in the skin against dehydration and environmental stress. Interestingly, Sprr2a mRNA is detected in the mouse uterus and is regulated by 17ß-oestradiol (E2). In the present study, we investigated the effects of E2 and oestrogenic compounds on the regulation and localisation of Sprr2a protein in the mouse uterus. Immunohistochemical staining revealed that Sprr2a protein is detected only in the adult uterus, and not in the ovary, oviduct or testis. We also demonstrated that Sprr2a protein is tightly regulated by E2 in the mouse uterus and exclusively detected in luminal and glandular epithelial cells. Furthermore, Sprr2a is dose-dependently induced by oestrogenic compounds such as bisphenol A and 4-tert-octylphenol. Collectively, our studies suggest that Sprr2a protein may have a unique function in physiological events in the mouse uterus and can be used as an indicator to detect compounds with oestrogenic activity in the mouse uterus.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Útero/metabolismo , Animais , Compostos Benzidrílicos/farmacologia , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Estrogênios não Esteroides/farmacologia , Feminino , Fulvestranto , Masculino , Camundongos , Fenóis/farmacologia , Testículo/metabolismo , Útero/efeitos dos fármacos
15.
Tuberc Respir Dis (Seoul) ; 87(1): 52-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993994

RESUMO

Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.

16.
Stem Cells ; 30(5): 876-87, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22311737

RESUMO

CD49f (integrin subunit α6) regulates signaling pathways in a variety of cellular activities. However, the role of CD49f in regulating the differentiation and pluripotency of stem cells has not been fully investigated. Therefore, in this study, human mesenchymal stem cells (hMSCs) were induced to form spheres under nonadherent culture conditions, and we found that the CD49f-positive population was enriched in MSC spheres compared with MSCs in a monolayer. The expression of CD49f regulated the ability of hMSCs to form spheres and was associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Furthermore, the forced expression of CD49f modulated the proliferation and differentiation potentials of hMSCs through prolonged activation of PI3K/AKT and suppressed the level of p53. We showed that the pluripotency factors OCT4 and SOX2 were recruited to the putative promoter region of CD49f, indicating that OCT4 and SOX2 play positive roles in the expression of CD49f. Indeed, CD49f expression was upregulated in human embryonic stem cells (hESCs) compared with hMSCs. The elevated level of CD49f expression was significantly decreased upon embryoid body formation in hESCs. In hESCs, the knockdown of CD49f downregulated PI3K/AKT signaling and upregulated the level of p53, inducing differentiation into three germ layers. Taken together, our data suggest that the cell-surface protein CD49f has novel and dynamic roles in regulating the differentiation potential of hMSCs and maintaining pluripotency.


Assuntos
Células-Tronco Embrionárias/metabolismo , Integrina alfa6/biossíntese , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Fator 3 de Transcrição de Octâmero/biossíntese , Fatores de Transcrição SOXB1/biossíntese , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo
17.
Antioxidants (Basel) ; 12(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37371940

RESUMO

Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.

18.
Immune Netw ; 23(6): e48, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38188599

RESUMO

Mesenchymal stromal/stem cells (MSCs) possess immunoregulatory properties and their regulatory functions represent a potential therapy for acute lung injury (ALI). However, uncertainties remain with respect to defining MSCs-derived immunomodulatory pathways. Therefore, this study aimed to investigate the mechanism underlying the enhanced effect of human recombinant bone morphogenic protein-2 (rhBMP-2) primed ES-MSCs (MSCBMP2) in promoting Tregs in ALI mice. MSC were preconditioned with 100 ng/ml rhBMP-2 for 24 h, and then administrated to mice by intravenous injection after intratracheal injection of 1 mg/kg LPS. Treating MSCs with rhBMP-2 significantly increased cellular proliferation and migration, and cytokines array reveled that cytokines release by MSCBMP2 were associated with migration and growth. MSCBMP2 ameliorated LPS induced lung injury and reduced myeloperoxidase activity and permeability in mice exposed to LPS. Levels of inducible nitric oxide synthase were decreased while levels of total glutathione and superoxide dismutase activity were further increased via inhibition of phosphorylated STAT1 in ALI mice treated with MSCBMP2. MSCBMP2 treatment increased the protein level of IDO1, indicating an increase in Treg cells, and Foxp3+CD25+ Treg of CD4+ cells were further increased in ALI mice treated with MSCBMP2. In co-culture assays with MSCs and RAW264.7 cells, the protein level of IDO1 was further induced in MSCBMP2. Additionally, cytokine release of IL-10 was enhanced while both IL-6 and TNF-α were further inhibited. In conclusion, these findings suggest that MSCBMP2 has therapeutic potential to reduce massive inflammation of respiratory diseases by promoting Treg cells.

19.
Toxicol In Vitro ; 89: 105585, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36931533

RESUMO

Alveolar epithelial cells (AECs) are vulnerable to injury, which can result in epithelial hyperplasia, apoptosis, and chronic inflammation. In this study, we developed human induced pluripotent stem cell (hiPS) cell-derived AECs (iAECs) and the iAECs based organoids (AOs) for testing AEC toxicity after chemical exposure. HiPS cells were cultured for 14 days with differentiation medium corresponding to each step, and the iAECs-based AOs were maintained for another 14 days. SFTPC and AQP5 were expressed in the AOs, and mRNA levels of SOX9, NKX2.1, GATA6, HOPX, and ID2 were increased. The AOs were exposed for 24 h to nine chemical substances, and IC50 values of the nine chemicals were determined using MTT assay. When the correlations between iAECs 2D culture and AOs 3D culture were calculated using Pearson's correlation coefficient r value, the nine chemicals that caused a significant decrease of cell viability in 3D culture were found to be highly correlated in 2D culture. The cytotoxicity and nitric oxide release in AO cultured with macrophages were then investigated. When AOs with macrophages were exposed to sodium chromate for 24 h, the IC50 value and nitric oxide production were higher than when the AOs were exposed alone. Taken together, the AO-based 3D culture system provides a useful platform for understanding biological characteristics of AECs and modeling chemical exposures.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Óxido Nítrico , Células Epiteliais Alveolares , Diferenciação Celular , Organoides
20.
Int J Stem Cells ; 16(2): 191-201, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105560

RESUMO

Background and Objectives: O-cyclic phytosphingosine-1-phosphate (cP1P) is a synthetic chemical and has a structure like sphingosine-1-phosphate (S1P). S1P is known to promote cell migration, invasion, proliferation, and anti-apoptosis through hippocampal signals. However, S1P mediated cellular-, molecular mechanism is still remained in the lung. Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are characterized by excessive immune response, increased vascular permeability, alveolar-peritoneal barrier collapse, and edema. In this study, we determined whether cP1P primed human dermal derived mesenchymal stem cells (hdMSCs) ameliorate lung injury and its therapeutic pathway in ALI mice. Methods and Results: cP1P treatment significantly stimulated MSC migration and invasion ability. In cytokine array, secretion of vascular-related factors was increased in cP1P primed hdMSCs (hdMSCcP1P), and cP1P treatment induced inhibition of Lats while increased phosphorylation of Yap. We next determined whether hdMSCcP1P reduce inflammatory response in LPS exposed mice. hdMSCcP1P further decreased infiltration of macrophage and neutrophil, and release of TNF-α, IL-1ß, and IL-6 were reduced rather than naïve hdMSC treatment. In addition, phosphorylation of STAT1 and expression of iNOS were significantly decreased in the lungs of MSCcP1P treated mice. Conclusions: Taken together, these data suggest that cP1P treatment enhances hdMSC migration in regulation of Hippo signaling and MSCcP1P provide a therapeutic potential for ALI/ARDS treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa