Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780064

RESUMO

Tea green leafhoppers are insects widely distributed in major tea-growing areas. At present, less attention has been paid to the study on effect of tea green leafhopper infestation on tea growth phenotype. In this study, tea green leafhoppers were used to treat tea branches in laboratory and co-treated with brassinolide (BL), the highest bioactivity of brassinosteroids (BRs), in tea garden. The results showed that the expression of genes related to BRs synthesis was inhibited and BL content was reduced in tea shoots after infestation by tea green leafhoppers. In addition, area of each leaf position, length and diameter of internodes, and the biomass of the tender shoots of tea plant were decreased after infestation by tea green leafhoppers. The number of trichomes, leaf thickness, palisade tissue thickness and cuticle thickness of tea shoots were increased after tea green leafhoppers infestation. BL spraying could partially recover the phenotypic changes of tea branches caused by tea green leafhoppers infestation. Further studies showed that tea green leafhoppers infestation may regulate the expression of CsDWF4 (a key gene for BL synthesis) through transcription factors CsFP1 and CsTCP1a, which finally affect the BL content. Moreover, BL was applied to inhibit the tea green leafhoppers infestation on tea shoots. In conclusion, our study revealed the effect of plant hormone BL-mediated tea green leafhoppers infestation on the growth phenotype of tea plants.

2.
Opt Express ; 32(3): 3891-3911, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297600

RESUMO

In pursuit of enhancing the display performance of gamut extension algorithms across diverse image types while minimizing image dependency, this study introduces a dynamic gamut extension algorithm. The algorithm is designed to extend the sRGB source gamut towards the wide gamut of a laser display. To evaluate its effectiveness, psychophysical experiments were conducted using four distinct image categories: complexions, scenery, objects, and color blocks and bars. The performance of the proposed algorithm was benchmarked against four established color gamut mapping algorithms. The comparative analysis revealed that our algorithm excels in handling wide color gamuts, outperforming the alternatives in terms of preference and the preservation of detail richness.

3.
Plant Cell ; 33(7): 2360-2374, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33871651

RESUMO

Light functions as the primary environmental stimulus and brassinosteroids (BRs) as important endogenous growth regulators throughout the plant lifecycle. Photomorphogenesis involves a series of vital developmental processes that require the suppression of BR-mediated seedling growth, but the mechanism underlying the light-controlled regulation of the BR pathway remains unclear. Here, we reveal that nuclear factor YC proteins (NF-YCs) function as essential repressors of the BR pathway during light-controlled hypocotyl growth in Arabidopsis thaliana. In the light, NF-YCs inhibit BR biosynthesis by directly targeting the promoter of the BR biosynthesis gene BR6ox2 and repressing its transcription. NF-YCs also interact with BIN2, a critical repressor of BR signaling, and facilitate its stabilization by promoting its Tyr200 autophosphorylation, thus inhibiting the BR signaling pathway. Consistently, loss-of-function mutants of NF-YCs show etiolated growth and constitutive BR responses, even in the light. Our findings uncover a dual role of NF-YCs in repressing BR biosynthesis and signaling, providing mechanistic insights into how light antagonizes the BR pathway to ensure photomorphogenic growth in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/metabolismo , Hipocótilo/fisiologia , Transdução de Sinais/fisiologia
4.
Plant Cell ; 33(1): 153-171, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751092

RESUMO

Plants have evolved precise mechanisms to optimize immune responses against pathogens. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) plays a vital role in plant innate immunity by regulating basal resistance and effector-triggered immunity. Nucleocytoplasmic trafficking of EDS1 is required for resistance reinforcement, but the molecular mechanism remains elusive. Here, we show that EDS1-INTERACTING J PROTEIN1 (EIJ1), which acts as a DnaJ protein-like chaperone in response to pathogen infection, functions as an essential negative regulator of plant immunity by interacting with EDS1. The loss-of-function mutation of EIJ1 did not affect plant growth but significantly enhanced pathogen resistance. Upon pathogen infection, EIJ1 relocalized from the chloroplast to the cytoplasm, where it interacted with EDS1, thereby restricting pathogen-triggered trafficking of EDS1 to the nucleus and compromising resistance at an early infection stage. During disease development, EIJ1 was gradually degraded, allowing the nuclear accumulation of EDS1 for transcriptional resistance reinforcement. The avirulent strain Pst DC3000 (AvrRps4) abolished the repressive action of EIJ1 by rapidly inducing its degradation in the effector-triggered immunity response. Thus, our findings show that EIJ1 is an essential EDS1-dependent negative regulator of innate plant immunity and provide a mechanistic understanding of how the nuclear versus cytoplasmic distribution of EDS1 is regulated during the immune response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
J Sci Food Agric ; 104(7): 3926-3935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252625

RESUMO

BACKGROUND: Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes. RESULTS: AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes. CONCLUSION: The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.


Assuntos
Artemisia , Drosophila melanogaster , Masculino , Feminino , Animais , Drosophila melanogaster/genética , Antioxidantes/farmacologia , Longevidade , Envelhecimento , Suplementos Nutricionais
6.
Plant Cell Environ ; 46(11): 3464-3480, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37553868

RESUMO

Herbivore-induced plant volatiles (HIPVs) are critical compounds that directly or indirectly regulate the tritrophic interactions among herbivores, natural enemies and plants. The synthesis and release of HIPVs are regulated by many biotic and abiotic factors. However, the mechanism by which multiple factors synergistically affect HIPVs release remains unclear. Tea plant (Camellia sinensis) is the object of this study because of its rich and varied volatile metabolites. In this study, benzyl nitrile was released from herbivore-attacked tea plants more in the daytime than at night, which was consistent with the feeding behaviour of tea geometrid (Ectropis grisescens Warren) larvae. The Y-tube olfactometer assay and insect resistance analysis revealed that benzyl nitrile can repel tea geometrid larvae and inhibit their growth. On the basis of enzyme activities in transiently transformed Nicotiana benthamiana plants, CsCYP79 was identified as a crucial regulator in the benzyl nitrile biosynthetic pathway. Light signalling-related transcription factor CsPIF1-like and the jasmonic acid (JA) signalling-related transcription factor CsMYC2 serve as the activator of CsCYP79 under light and damage conditions. Our study revealed that light (abiotic factor) and herbivore-induced damage (biotic stress) synergistically regulate the synthesis and release of benzyl nitrile to protect plants from diurnal herbivorous tea geometrid larvae.


Assuntos
Camellia sinensis , Lepidópteros , Animais , Camellia sinensis/metabolismo , Herbivoria , Nitrilas/metabolismo , Larva/fisiologia , Chá/metabolismo
7.
Opt Express ; 31(16): 26815-26830, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710532

RESUMO

The color gamut volume (CGV) and light efficiency of a four-primary display system were theoretically simulated with different wavelength configuration. Given the wavelengths of the blue and red primaries, we optimized the other two primary colors; the wavelength set with the largest CGV was chosen. The maximum CGV, 2.346 × 106, was obtained at (660, 530, 507, 465) nm. The maximum light efficiency was also determined. A trade-off between CGV and light efficiency should be made according to the requirement of the devices. This study provides guidance for the construction of a four-primary laser display system and the optimization of the CGV in multi-primary display systems.

8.
Opt Express ; 31(18): 29843-29858, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710775

RESUMO

Holographic optical elements (HOEs) play an important role in augmented reality (AR) systems. However, the fabrication of full-color HOEs is difficult and the diffraction efficiency is low. In this paper, we use the time-scheduled iterative exposure method to fabricate full-color HOEs with high diffraction efficiency. Through this method, a full-color HOE with an average diffraction efficiency of 73.4% was implemented in a single photopolymer, the highest rate yet reported. In addition, the AR system is simulated by the geometric optics method combining k-vector circle and ray tracing and structured by combining laser micro-drop and high diffraction efficiency HOEs. A good color blending effect was achieved in a full-color AR system by using the reconstruction wavelength consistent with the recording light. It can present clear holographic images in a full-color AR display system.

9.
Cell Mol Neurobiol ; 43(2): 893-905, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35437650

RESUMO

In traumatic brain injury (TBI), mechanical injury results in instantaneous tissue damages accompanied by subsequent pro-inflammatory cascades composed of microgliosis and astrogliosis. However, the interactive roles between microglia and astrocytes during the pathogenesis of TBI remain unclear and sometimes debatable. In this study, we used a forebrain stab injury mouse model to investigate the pathological role of reactive astrocytes in cellular and molecular changes of inflammatory response following TBI. In the ipsilateral hemisphere of stab-injured brain, monocyte infiltration and neuronal loss, as well as increased elevated astrogliosis, microglia activation and inflammatory cytokines were observed. To verify the role of reactive astrocytes in TBI, local and partial ablation of astrocytes was achieved by stereotactic injection of diphtheria toxin in the forebrain of Aldh1l1-CreERT2::Ai9::iDTR transgenic mice which expressed diphtheria toxin receptor (DTR) in astrocytes after tamoxifen induction. This strategy achieved about 20% of astrocytes reduction at the stab site as validated by immunofluorescence co-staining of GFAP with tdTomato-positive astrocytes. Interestingly, reduction of astrocytes showed increased microglia activation and monocyte infiltration, accompanied with increased severity in stab injury-induced neuronal loss when compared with DTR-/- mice, together with elevation of inflammatory chemokines such as CCL2, CCL5 and CXCL10 in astrogliosis-reduced mice. Collectively, our data verified the interactive role of astrocytes as an immune modulator in suppressing inflammatory responses in the injured brain. Schematic diagram shows monocyte infiltration and neuronal loss, as well as increased elevated astrogliosis, microglia activation and chemokines were observed in the injured site after stab injury. Local and partial ablation of astrocytes led to increased microglia activation and monocyte infiltration, accompanied with increased severity in neuronal loss together with elevation of inflammatory chemokines as compared with control mice subjected stab injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Animais , Astrócitos/patologia , Gliose/patologia , Monócitos , Lesões Encefálicas/patologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Quimiocinas , Camundongos Transgênicos , Microglia/patologia , Camundongos Endogâmicos C57BL
10.
Ecotoxicol Environ Saf ; 268: 115678, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979350

RESUMO

In light of the documented elevated concentrations of total mercury (Hg) and methylmercury (MeHg) in poultry originating from Hg-contaminated sites, a knowledge gap persists regarding the levels of Hg found in home-produced eggs (HPEs) and the associated dietary exposure risks in regions affected by Hg mining. To address this knowledge gap, a comprehensive investigation was undertaken with the primary objectives of ascertaining the concentrations of THg and MeHg in HPEs and evaluating the potential hazards associated with the consumption of eggs from the Wanshan Hg mining area in Southwest China. The results showed that THg concentrations in HPEs varied within a range of 10.5-809 ng/g (with a geometric mean (GM) of 64.1 ± 2.7 ng/g), whereas MeHg levels spanned from 1.3 to 291 ng/g (GM, 23.1 ± 3.4 ng/g). Remarkably, in half of all eggs, as well as those collected from regions significantly impacted by mining activities, THg concentrations exceeded the permissible maximum allowable value for fresh eggs (50 ng/g). Consumption of these eggs resulted in increased exposure risks associated with THg and MeHg, with GM values ranging from 0.024 to 0.17 µg/kg BW/day and 0.0089-0.066 µg/kg BW/day, respectively. Notably, the most substantial daily dosage was observed among children aged 2-3 years. The study found that consuming HPEs could result in a significant IQ reduction of 34.0 points for the whole mining area in a year. These findings highlight the potential exposure risk, particularly concerning MeHg, stemming from the consumption of local HPEs by residents in mining areas, thereby warranting serious consideration within the framework of Hg exposure risk assessment in mining locales.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Criança , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Monitoramento Ambiental , China , Mineração
11.
Stroke ; 53(12): 3751-3762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305312

RESUMO

BACKGROUND: Emerging evidence highlighted vascular injury in aggravating radiation-induced brain injury (RIBI), a common complication of radiotherapy. This study aimed to delineate the pathological feature of cerebral small vessel and investigate the functional roles of Notch signaling in RIBI. METHODS: Brain tissue and functional MRI from RIBI patients were collected and analyzed for radiation-induced vasculopathy. A RIBI mouse model was induced by a single dose of 30-Gy cranial irradiation. Vascular morphology, pulsatility, and reactivity to pharmacological interventions, such as nimodipine and 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, were monitored by 2-photon imaging in mice at 6 weeks postirradiation. Western blot, real-time quantitative PCR, immunofluorescence staining, and behavioral tests were performed. The effect of N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester, a Notch inhibitor, was used to investigate the vascular pathogenesis of RIBI mouse model. RESULTS: Morphologically, radiation resulted in vascular malformation featured by focal contractile rings together with general stenosis. Functionally, radiation also led to hypoperfusion, attenuated vascular pulsatility, and decreased dilation to nimodipine and 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid. Mechanically, Notch activation and increased expression of α-SMA protein were found in both surgical specimens of RIBI patients and the irradiated mice. Importantly, Notch inhibition by N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester significantly alleviated cerebral hypoperfusion, vasculopathy, and cognitive deficits in the RIBI mouse model. CONCLUSIONS: Radiation-induced cerebral vasculopathy showed bead-like shape and increased contractile state. Inhibition of Notch signaling by N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester effectively attenuated vasculopathy and relieved cognitive impairment, suggesting Notch signaling as a therapeutic target for the treatment of RIBI.


Assuntos
Lesões Encefálicas , Transtornos Cerebrovasculares , Lesões por Radiação , Animais , Camundongos , Nimodipina , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Transtornos Cerebrovasculares/complicações , Lesões Encefálicas/patologia , Ésteres/metabolismo , Ésteres/farmacologia , Receptores Notch/metabolismo
12.
J Neuroinflammation ; 19(1): 231, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131309

RESUMO

BACKGROUND: Radiation-induced brain injury (RIBI) is the most serious complication of radiotherapy in patients with head and neck tumors, which seriously affects the quality of life. Currently, there is no effective treatment for patients with RIBI, and identifying new treatment that targets the pathological mechanisms of RIBI is urgently needed. METHODS: Immunofluorescence staining, western blotting, quantitative real-time polymerase chain reaction (Q-PCR), co-culture of primary neurons and microglia, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and CRISPR-Cas9-mediated gene editing techniques were employed to investigate the protective effects and underlying mechanisms of pregabalin that ameliorate microglial activation and neuronal injury in the RIBI mouse model. RESULTS: Our findings showed that pregabalin effectively repressed microglial activation, thereby reducing neuronal damage in the RIBI mouse model. Pregabalin mitigated inflammatory responses by directly inhibiting cytoplasmic translocation of high-mobility group box 1 (HMGB1), a pivotal protein released by irradiated neurons which induced subsequent activation of microglia and inflammatory cytokine expression. Knocking out neuronal HMGB1 or microglial TLR2/TLR4/RAGE by CRISPR/Cas9 technique significantly inhibited radiation-induced NF-κB activation and pro-inflammatory transition of microglia. CONCLUSIONS: Our findings indicate the protective mechanism of pregabalin in mitigating microglial activation and neuronal injury in RIBI. It also provides a therapeutic strategy by targeting HMGB1-TLR2/TLR4/RAGE signaling pathway in the microglia for the treatment of RIBI.


Assuntos
Lesões Encefálicas , Proteína HMGB1 , Animais , Lesões Encefálicas/metabolismo , Citocinas/metabolismo , DNA Nucleotidilexotransferase/metabolismo , DNA Nucleotidilexotransferase/farmacologia , Proteína HMGB1/metabolismo , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Pregabalina/metabolismo , Pregabalina/farmacologia , Pregabalina/uso terapêutico , Qualidade de Vida , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Brief Bioinform ; 21(3): 970-981, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31157880

RESUMO

Synonymous mutations do not change the encoded amino acids but may alter the structure or function of an mRNA in ways that impact gene function. Advances in next generation sequencing technologies have detected numerous synonymous mutations in the human genome. Several computational models have been proposed to predict deleterious synonymous mutations, which have greatly facilitated the development of this important field. Consequently, there is an urgent need to assess the state-of-the-art computational methods for deleterious synonymous mutation prediction to further advance the existing methodologies and to improve performance. In this regard, we systematically compared a total of 10 computational methods (including specific method for deleterious synonymous mutation and general method for single nucleotide mutation) in terms of the algorithms used, calculated features, performance evaluation and software usability. In addition, we constructed two carefully curated independent test datasets and accordingly assessed the robustness and scalability of these different computational methods for the identification of deleterious synonymous mutations. In an effort to improve predictive performance, we established an ensemble model, named Prediction of Deleterious Synonymous Mutation (PrDSM), which averages the ratings generated by the three most accurate predictors. Our benchmark tests demonstrated that the ensemble model PrDSM outperformed the reviewed tools for the prediction of deleterious synonymous mutations. Using the ensemble model, we developed an accessible online predictor, PrDSM, available at http://bioinfo.ahu.edu.cn:8080/PrDSM/. We hope that this comprehensive survey and the proposed strategy for building more accurate models can serve as a useful guide for inspiring future developments of computational methods for deleterious synonymous mutation prediction.


Assuntos
Biologia Computacional/métodos , Mutação , Algoritmos , Conjuntos de Dados como Assunto , Humanos , Aprendizado de Máquina
14.
Plant Physiol ; 187(3): 1414-1427, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618053

RESUMO

Environmental stresses cause an increased number of unfolded or misfolded proteins to accumulate in the endoplasmic reticulum (ER), resulting in ER stress. To restore ER homeostasis and survive, plants initiate an orchestrated signaling pathway known as the unfolded protein response (UPR). Asparagine-rich protein (NRP) 1 and NRP2, two homologous proteins harboring a Development and Cell Death domain, are associated with various stress responses in Arabidopsis (Arabidopsis thaliana), but the relevant molecular mechanism remains obscure. Here, we show that NRP1 and NRP2 act as key pro-survival factors during the ER stress response and that they inhibit cell death. Loss-of-function of NRP1 and NRP2 results in decreased tolerance to the ER stress inducer tunicamycin (TM), accelerating cell death. NRP2 is constitutively expressed while NRP1 is induced in plants under ER stress. In Arabidopsis, basic leucine zipper protein (bZIP) 28 and bZIP60 are important transcription factors in the UPR that activates the expression of many ER stress-related genes. Notably, under ER stress, bZIP60 activates NRP1 by directly binding to the UPRE-I element in the NRP1 promoter. These findings reveal a pro-survival strategy in plants wherein the bZIP60-NRPs cascade suppresses cell death signal transmission, improving survival under adverse conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Morte Celular , Estresse do Retículo Endoplasmático , Peptídeos e Proteínas de Sinalização Intracelular , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular/genética , Estresse do Retículo Endoplasmático/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Longevidade
15.
Plant Physiol ; 185(4): 1697-1707, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793917

RESUMO

Seed storage protein (SSP) acts as one of the main components of seed storage reserves, of which accumulation is tightly mediated by a sophisticated regulatory network. However, whether and how gibberellin (GA) signaling is involved in this important biological event is not fully understood. Here, we show that SSP content in Arabidopsis (Arabidopsis thaliana) is significantly reduced by GA and increased in the GA biosynthesis triple mutant ga3ox1/3/4. Further investigation shows that the DELLA protein RGA-LIKE3 (RGL3), a negative regulator of GA signaling, is important for SSP accumulation. In rgl3 and 35S:RGL3-HA, the expression of SSP genes is down- and upregulated, respectively, compared with that in the wild-type. RGL3 interacts with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor for seed developmental processes governing SSP accumulation, both in vivo and in vitro, thus greatly promoting the transcriptional activating ability of ABI3 on SSP genes. In addition, genetic evidence shows that RGL3 and ABI3 regulate SSP accumulation in an interdependent manner. Therefore, we reveal a function of RGL3, a little studied DELLA member, as a coactivator of ABI3 to promote SSP biosynthesis during seed maturation stage. This finding advances the understanding of mechanisms in GA-mediated seed storage reserve accumulation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
Opt Express ; 30(8): 13356-13371, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472950

RESUMO

We propose and demonstrate a resolution-preserving passive 2D/3D convertible display by two individual wavelengths. It uses a holographic optical element to generate two images and passively separate the exit pupils for these two wavelengths, which forms two viewpoints for each of the observer's eyes. Due to Bragg-mismatched reconstruction of two similar but distinct wavelengths, the images are separated in space. They can be fused into one through the convergence function of human eyes. By switching the input image source, the conversion between 2D and 3D mode can be realized. This method is resolution-preserving and 2D/3D convertible with no extra active components. For experimental verification, a proof-of-concept projection-type prototype is assessed.

17.
Opt Express ; 30(2): 1036-1055, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209248

RESUMO

For a display system, a wide-color gamut can significantly improve the viewing experience. It is known that an ultra-wide color gamut can be achieved using more primaries. However, for multi-primary displays (MPDs), choosing the parameters of the primaries (e.g., wavelength and luminance) is not trivial because the necessary theoretical foundation is still lacking. In this study, starting from three-primary display, we proposed a method for calculating all possible peak luminances of MPDs. This is done by mathematically representing the added new primaries with the original three primaries. Of all the possible results, by optimizing the peak luminance of each primary color, the theoretical gamut volume satisfying specific requirements could be obtained. The method provided can be extended to N primaries (N > 6). Using this method, we have successfully built a six-primary display system and used it to verify the validity of the method. Combined with the calculation of color gamut volume, the theoretical framework provided can be used to guide the selection of wavelength, spectrum width, and luminances of primaries in MPDs.

18.
Opt Express ; 30(18): 33374-33394, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242377

RESUMO

We propose and demonstrate a color-speckle assessment method based on a three-dimensional Jzazbz color space, which is appropriate for both three-primary and multi-primary systems. In the proposed scheme, new physical quantities are defined to describe the color-speckle characteristics, which provides a general and intuitive color-speckle evaluation for different laser projectors. Experimental verification is also performed using three-primary and six-primary laser projectors. The simulation and measurement results are consistent.

19.
Opt Express ; 30(21): 38938-38952, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258446

RESUMO

To improve the color rendering ability in yellow color regions, the inclusion of yellow among the primary colors is commonly proposed. In this study, an algorithm for evaluating gamut enhancement in yellow regions is developed. The performance of different wavelength sets of RGBY four-primary system is studied theoretically in terms of various aspects, including the color gamut volume, gamut coverages, and gamut enhancement ratio in yellow regions. The optimal wavelength set and its optimal luminance ratio are then determined. This research provides strong guidance for the construction of practical four-primary-laser display systems.

20.
Opt Express ; 30(20): 36576-36591, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258583

RESUMO

Based on the difference between multi-primary displays (MPDs) and three-primary displays, we propose a new definition for evaluating the color gamut volume (CGV) to explore the upper limit of MPDs, which could theoretically represent all colors that MPDs can display. The proposed definition corrects the defects in the L*a*b* color space that arise when calculating the CGV of MPDs. In view of the high computational complexity of this method, we propose a simplified scheme with a small margin of error. Additionally, we verify the new definition with experiments on a six-primary projector. This method is helpful in guiding the selection of light sources and the evaluation of MPDs, and also has great reference value to calculate the target gamut for gamut mapping in MPDs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa