Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Breast Cancer Res ; 25(1): 62, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280713

RESUMO

BACKGROUND: Although trastuzumab and other HER2-targeted therapies have significantly improved survival in patients with HER2 overexpressed or amplified (HER2+) breast cancer, a significant proportion of patients do not respond or eventually develop clinical resistance. Strategies to reverse trastuzumab resistance remain a high clinical priority. We were the first to report the role of CXCR4 in trastuzumab resistance. The present study aims to explore the therapeutic potential of targeting CXCR4 and better understand the associated mechanisms. METHODS: Immunofluorescent staining, confocal microscopy analysis, and immunoblotting were used to analyze CXCR4 expression. BrdU incorporation assays and flow cytometry were used to analyze dynamic CXCR4 expression. Three-dimensional co-culture (tumor cells/breast cancer-associated fibroblasts/human peripheral blood mononuclear cells) or antibody-dependent cellular cytotoxicity assay was used to mimic human tumor microenvironment, which is necessary for testing therapeutic effects of CXCR4 inhibitor or trastuzumab. The FDA-approved CXCR4 antagonist AMD3100, trastuzumab, and docetaxel chemotherapy were used to evaluate therapeutic efficacy in vitro and in vivo. Reverse phase protein array and immunoblotting were used to discern the associated molecular mechanisms. RESULTS: Using a panel of cell lines and patient breast cancer samples, we confirmed CXCR4 drives trastuzumab resistance in HER2+ breast cancer and further demonstrated the increased CXCR4 expression in trastuzumab-resistant cells is associated with cell cycle progression with a peak in the G2/M phases. Blocking CXCR4 with AMD3100 inhibits cell proliferation by downregulating mediators of G2-M transition, leading to G2/M arrest and abnormal mitosis. Using a panel of trastuzumab-resistant cell lines and an in vivo established trastuzumab-resistant xenograft mouse model, we demonstrated that targeting CXCR4 with AMD3100 suppresses tumor growth in vitro and in vivo, and synergizes with docetaxel. CONCLUSIONS: Our findings support CXCR4 as a novel therapeutic target and a predictive biomarker for trastuzumab resistance in HER2+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Docetaxel/farmacologia , Apoptose , Leucócitos Mononucleares/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Mitose , Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral , Receptores CXCR4/genética
2.
Biomarkers ; 20(5): 313-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26329528

RESUMO

OBJECTIVE: To identify clinically relevant predictive biomarkers of trastuzumab resistance. MATERIAL AND METHODS: MTT, FACS assays, immunoblotting and immunocytochemistry were used to phenotypically characterize drug responses of two cell models BT474R and SKBR3R. Student's t-test and Spearman's correlation were applied for statistic analysis. RESULTS: The activity of a downstream effector of the HER2 pathway phosphorylated ribosomal protein S6 (p-rpS6), was suppressed by trastuzumab in the parental cell lines yet remained unchanged in the resistant cells following treatment. The level of p-rpS6 was inversely correlated to the drug induced growth inhibition of trastuzumab-resistant cells when they are treated with selected HER2 targeting drugs. CONCLUSION: p-rpS6 is a robust post-treatment indicator of HER2 pathway-targeted therapy resistance.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Receptor ErbB-2/metabolismo , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais , Trastuzumab/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração Inibidora 50 , Fosforilação
3.
Res Sq ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824840

RESUMO

Background: Although trastuzumab and other HER2-targeted therapies have significantly improved survival in patients with HER2 overexpressed or amplified (HER2+) breast cancer, a significant proportion of patients do not respond or eventually develop clinical resistance. Strategies to reverse trastuzumab resistance remain a high clinical priority. We were the first to report the role of CXCR4 in trastuzumab resistance. The present study aims to explore the therapeutic potential of targeting CXCR4 and better understand the associated mechanisms. Methods: Immunofluorescent staining, confocal microscopy analysis, and immunoblotting were used to analyze CXCR4 expression. BrdU incorporation assays and flow cytometry were used to analyze dynamic CXCR4expression. Three-dimensional co-culture (tumor cells/ breast cancer-associated fibroblasts / human peripheral blood mononuclear cells) or antibody-dependent cellular cytotoxicity assay was used to mimic human tumor microenvironment, which is necessary for testing therapeutic effect of CXCR4 inhibitor or trastuzumab. The FDA-approved CXCR4 antagonist AMD3100, trastuzumab, and docetaxel chemotherapy were used to evaluate therapeutic efficacy in vitro and in vivo. Reverse phase protein array and immunoblotting were used to discern the associated molecular mechanisms. Results: Using multiple cell lines and patient breast cancer samples we confirmed CXCR4 drives trastuzumab resistance in HER2+ breast cancer and further demonstrated that the increased CXCR4 expression in trastuzumab-resistant cells is associated with cell cycle progression with a peak in the G2/M phases. Blocking CXCR4 with AMD3100 inhibits cell proliferation by downregulating mediators of G2-M transition, leading to G2/M arrest and abnormal mitosis. Using multiple trastuzumab-resistant cell lines and an in vivo established trastuzumab-resistant xenograft mouse model, we demonstrated that targeting CXCR4 with AMD3100 suppresses tumor growth in vitro and in vivo, and synergizes with docetaxel. Conclusions: Our findings support CXCR4 as a novel therapeutic target and a predictive biomarker for trastuzumab resistance in HER2+ breast cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa