Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Pineal Res ; 74(1): e12834, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36203395

RESUMO

Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.


Assuntos
Transtornos Cronobiológicos , Relógios Circadianos , Melatonina , Lesões por Radiação , Voo Espacial , Humanos , Melatonina/farmacologia , Melatonina/fisiologia , Ritmo Circadiano/fisiologia
2.
Zoolog Sci ; 39(4)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960027

RESUMO

It is known that the bone matrix plays an important role in the response to physical stresses such as hypergravity and microgravity. In order to accurately analyze the response of bone to hypergravity and microgravity, a culture system under the conditions of coexistence of osteoclasts, osteoblasts, and bone matrix was earnestly desired. The teleost scale is a unique calcified organ in which osteoclasts, osteoblasts, and the two layers of bone matrix, i.e., a bony layer and a fibrillary layer, coexist. Therefore, we have developed in vitro organ culture systems of osteoclasts and osteoblasts with the intact bone matrix using goldfish scales. Using the scale culture system, we examined the effects of hypergravity with a centrifuge and simulated ground microgravity (g-µG) with a three-dimensional clinostat on osteoclasts and osteoblasts. Under 3-gravity (3G) loading for 1 day, osteoclastic marker mRNA expression levels decreased, while the mRNA expression of the osteoblastic marker increased. Upon 1 day of exposure, the simulated g-µG induced remarkable enhancement of osteoclastic marker mRNA expression, whereas the osteoblastic marker mRNA expression decreased. In response to these gravitational stimuli, osteoclasts underwent major morphological changes. By simulated g-µG treatments, morphological osteoclastic activation was induced, while osteoclastic deactivation was observed in the 3G-treated scales. In space experiments, the results that had been obtained with simulated g-µG were reproduced. RNA-sequencing analysis showed that osteoclastic activation was induced by the down-regulation of Wnt signaling under flight-microgravity. Thus, goldfish scales can be utilized as a bone model to analyze the responses of osteoclasts and osteoblasts to gravity.


Assuntos
Hipergravidade , Ausência de Peso , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Osteoblastos , Osteoclastos/metabolismo , RNA Mensageiro/genética
3.
J Plant Res ; 133(4): 571-585, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32424466

RESUMO

We have performed a seed-to-seed experiment in the cell biology experiment facility (CBEF) installed in the Kibo (Japanese Experiment Module) in the International Space Station. The CBEF has a 1 × g compartment on a centrifuge and a microgravity compartment, to investigate the effects of microgravity on the vegetative and reproductive growth of Arabidopsis thaliana (L.) Heynh. Seeds germinated irrespective of gravitational conditions after water supply on board. Thereafter, seedlings developed rosette leaves. The time of bolting was slightly earlier under microgravity than under space 1 × g. Microgravity enhanced the growth rate of peduncles as compared with space 1 × g or ground control. Plants developed flowers, siliques and seeds, completing their entire life cycle during 62-days cultivation. Although the flowering time was not significantly affected under microgravity, the number of flowers in a bolted plant significantly increased under microgravity as compared with space 1 × g or ground control. Microscopic analysis of reproductive organs revealed that the longitudinal length of anthers was significantly shorter under microgravity when compared with space 1 × g, while the length of pistils and filaments was not influenced by the gravitational conditions. Seed mass significantly increased under microgravity when compared with space 1 × g. In addition, seeds produced in space were found not to germinate on the ground. These results indicate that microgravity significantly influenced the reproductive development of Arabidopsis plants even though Earth's gravitational environment is not absolutely necessary for them to complete their life cycle.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ausência de Peso , Arabidopsis/crescimento & desenvolvimento , Reprodução , Sementes
4.
Proc Natl Acad Sci U S A ; 114(23): 5988-5993, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533361

RESUMO

If humans ever start to live permanently in space, assisted reproductive technology using preserved spermatozoa will be important for producing offspring; however, radiation on the International Space Station (ISS) is more than 100 times stronger than that on Earth, and irradiation causes DNA damage in cells and gametes. Here we examined the effect of space radiation on freeze-dried mouse spermatozoa held on the ISS for 9 mo at -95 °C, with launch and recovery at room temperature. DNA damage to the spermatozoa and male pronuclei was slightly increased, but the fertilization and birth rates were similar to those of controls. Next-generation sequencing showed only minor genomic differences between offspring derived from space-preserved spermatozoa and controls, and all offspring grew to adulthood and had normal fertility. Thus, we demonstrate that although space radiation can damage sperm DNA, it does not affect the production of viable offspring after at least 9 mo of storage on the ISS.


Assuntos
Dano ao DNA/efeitos da radiação , Desenvolvimento Embrionário/efeitos da radiação , Espermatozoides/efeitos da radiação , Animais , Transferência Embrionária/métodos , Transferência Embrionária/mortalidade , Feminino , Liofilização/métodos , Células Germinativas/efeitos da radiação , Tamanho da Ninhada de Vivíparos/efeitos da radiação , Masculino , Camundongos , Oócitos , Técnicas de Reprodução Assistida , Voo Espacial , Injeções de Esperma Intracitoplásmicas/métodos , Espermatozoides/fisiologia
5.
J Pineal Res ; 67(3): e12594, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286565

RESUMO

Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.


Assuntos
Reabsorção Óssea/prevenção & controle , Melatonina/uso terapêutico , Voo Espacial , Animais , Densidade Óssea/efeitos dos fármacos , Calcitonina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Carpa Dourada , Imuno-Histoquímica , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Ausência de Peso/efeitos adversos
6.
Physiol Plant ; 165(3): 464-475, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30159898

RESUMO

Plants exhibit helical growth movements known as circumnutation in growing organs. Some studies indicate that circumnutation involves the gravitropic response, but this notion is a matter of debate. Here, using the agravitropic rice mutant lazy1 and space-grown rice seedlings, we found that circumnutation was reduced or lost during agravitropic growth in coleoptiles. Coleoptiles of wild-type rice exhibited circumnutation in the dark, with vigorous oscillatory movements during their growth. The gravitropic responses in lazy1 coleoptiles differed depending on the growth stage, with gravitropic responses detected during early growth and agravitropism during later growth. The nutation-like movements observed in lazy1 coleoptiles at the early stage of growth were no longer detected with the disappearance of the gravitropic response. To verify the relationship between circumnutation and gravitropic responses in rice coleoptiles, we conducted spaceflight experiments in plants under microgravity conditions on the International Space Station. Wild-type rice seeds were germinated, and the resulting seedlings were grown under microgravity or a centrifuge-generated 1 g environment in space. We began filming the seedlings 2 days after seed imbibition and obtained images of seedling growth every 15 min. The seed germination rate in space was 92-100% under both microgravity and 1 g conditions. LED-synchronized flashlight photography induced an attenuation of coleoptile growth and circumnutational movement due to cumulative light exposure. Nevertheless, wild-type rice coleoptiles still showed circumnutational oscillations under 1 g but not microgravity conditions. These results support the idea that the gravitropic response is involved in plant circumnutation.


Assuntos
Cotilédone/fisiologia , Oryza/fisiologia , Plântula/fisiologia , Cotilédone/genética , Gravitropismo/genética , Gravitropismo/fisiologia , Mutação/genética , Oryza/genética , Plântula/genética
7.
Physiol Plant ; 162(1): 135-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28862767

RESUMO

We carried out a space experiment, denoted as Aniso Tubule, to examine the effects of microgravity on the growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls, using lines in which microtubules are visualized by labeling tubulin or microtubule-associated proteins (MAPs) with green fluorescent protein (GFP). In all lines, GFP-tubulin6 (TUB6)-, basic proline-rich protein1 (BPP1)-GFP- and spira1-like3 (SP1L3)-GFP-expressing using a constitutive promoter, and spiral2 (SPR2)-GFP- and GFP-65 kDa MAP-1 (MAP65-1)-expressing using a native promoter, the length of hypocotyls grown under microgravity conditions in space was longer than that grown at 1 g conditions on the ground. In contrast, the diameter of hypocotyls grown under microgravity conditions was smaller than that of the hypocotyls grown at 1 g. The percentage of cells with transverse microtubules was increased under microgravity conditions, irrespective of the lines. Also, the average angle of the microtubules with respect to the transverse cell axis was decreased in hypocotyls grown under microgravity conditions. When GFP fluorescence was quantified in hypocotyls of GFP-MAP65-1 and SPR2-GFP lines, microgravity increased the levels of MAP65-1, which appears to be involved in the maintenance of transverse microtubule orientation. However, the levels of SPR2 under microgravity conditions were comparable to those at 1 g. These results suggest that the microgravity-induced increase in the levels of MAP65-1 is involved in increase in the transverse microtubules, which may lead to modification of growth anisotropy, thereby developing longer and thinner hypocotyls under microgravity conditions in space.


Assuntos
Anisotropia , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente Extraterreno , Hipocótilo/crescimento & desenvolvimento , Microtúbulos/metabolismo , Ausência de Peso , Fluorescência , Hipocótilo/anatomia & histologia , Epiderme Vegetal/citologia , Plântula/crescimento & desenvolvimento
8.
Arch Biochem Biophys ; 594: 1-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874193

RESUMO

Cbl-b is a RING-type ubiquitin ligase. Previously, we showed that Cbl-b-mediated ubiquitination and proteosomal degradation of IRS-1 contribute to muscle atrophy caused by unloading stress. The phospho-pentapeptide DGpYMP (Cblin) mimics Tyr612-phosphorylated IRS-1 and inhibits the Cbl-b-mediated ubiquitination and degradation of IRS-1 in vitro and in vivo. In this study, we confirmed the direct interaction between Cblin and the TKB domain of Cbl-b using NMR. Moreover, we showed that the shortened tripeptide GpYM also binds to the TKB domain. To elucidate the inhibitory mechanism of Cblin, we solved the crystal structure of the TKB-Cblin complex at a resolution of 2.5 Å. The pY in Cblin inserts into a positively charged pocket in the TKB domain via hydrogen-bond networks and hydrophobic interactions. Within this complex, the Cblin structure closely resembles the TKB-bound form of another substrate-derived phosphopeptide, Zap-70-derived phosphopeptide. These peptides lack the conserved intrapeptidyl hydrogen bond between pY and a conserved residue involved in TKB-domain binding. Instead of the conserved interaction, these peptides specifically interact with the TKB domain. Based on this binding mode of Cblin to the TKB domain, we can design drugs against unloading-mediated muscle atrophy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Oligopeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-cbl/química , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Células HEK293 , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Modelos Moleculares , Oligopeptídeos/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-cbl/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-26850473

RESUMO

Using fish scales in which osteoclasts and osteoblasts coexist on the calcified bone matrix, we examined the effects of low-intensity pulsed ultrasound (LIPUS) on both osteoclasts and osteoblasts. At 3h of incubation after LIPUS treatment, osteoclastic markers such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K mRNA expressions decreased significantly while mRNA expressions of osteoblastic markers, osteocalcin, distal-less homeobox 5, runt-related transcription factor 2a, and runt-related transcription factor 2b, increased significantly. At 6 and 18h of incubation, however, both osteoclastic and osteoblastic marker mRNA expression did not change at least present conditions. Using GeneChip analysis of zebrafish scales treated with LIPUS, we found that cell death-related genes were upregulated with LIPUS treatment. Real-time PCR analysis indicated that the expression of apoptosis-related genes also increased significantly. To confirm the involvement of apoptosis in osteoclasts with LIPUS, osteoclasts were induced by autotransplanting scales in goldfish. Thereafter, the DNA fragmentation associated with apoptosis was detected in osteoclasts using the TUNEL (TdT-mediated dUTP nick end labeling) method. The multi-nuclei of TRAP-stained osteoclasts in the scales were labeled with TUNEL. TUNEL staining showed that the number of apoptotic osteoclasts in goldfish scales was significantly elevated by treatment with LIPUS at 3h of incubation. Thus, we are the first to demonstrate that LIPUS directly functions to osteoclasts and to conclude that LIPUS directly causes apoptosis in osteoclasts shortly after exposure.


Assuntos
Apoptose , Carpa Dourada/metabolismo , Modelos Animais , Osteoclastos/metabolismo , Ultrassom , Animais , Osteoclastos/citologia
11.
Zoolog Sci ; 30(3): 217-23, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23480382

RESUMO

Fish scales are a form of calcified tissue similar to that found in human bone. In medaka scales, we detected both osteoblasts and osteoclasts and subsequently developed a new scale assay system. Using this system, we analyzed the osteoblastic and osteoclastic responses under 2-, 3-, and 4-gravity (G) loading by both centrifugation and vibration. After loading for 10 min, the scales from centrifugal and vibration loading were incubated for 6 and 24 hrs, respectively, after which the osteoblastic and osteoclastic activities were measured. Osteoblastic activity significantly increased under 2- to 4-G loading by both centrifugation and vibration. In contrast, we found that osteoclastic activity significantly decreased under 2- and 3-G loading in response to both centrifugation and vibration. Under 4-G loading, osteoclastic activity also decreased on centrifugation, but significantly increased under 4-G loading by vibration, concomitant with markedly increased osteoblastic activity. Expression of the receptor activator of the NF-κB ligand (RANKL), an activation factor of osteoclasts expressed in osteoblasts, increased significantly under 4-G loading by vibration but was unchanged by centrifugal loading. A protein sequence similar to osteoprotegerin (OPG), which is known as an osteoclastogenesis inhibitory factor, was found in medaka using our sequence analysis. The ratio of RANKL/OPG-like mRNAs in the vibration-loaded scales was significantly higher than that in the control scales, although there was no difference between centrifugal loaded scales and the control scales. Accordingly, medaka scales provide a useful model by which to analyze bone metabolism in response to physical strain.


Assuntos
Hipergravidade , Oryzias/anatomia & histologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Regulação da Expressão Gênica/fisiologia , Osteoblastos/citologia , Osteoclastos/citologia , Osteoprotegerina/genética , Osteoprotegerina/metabolismo
12.
Zoolog Sci ; 29(8): 499-504, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22873807

RESUMO

Using our original in vitro assay system with goldfish scales, we examined the direct effect of prostaglandin E2 (PGE2) on osteoclasts and osteoblasts in teleosts. In this assay system, we measured the activity of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) as respective indicators of each activity in osteoblasts and osteoclasts. ALP activity in scales significantly increased following treatment at high concentration of PGE2(10⁻7 and 10⁻6 M) over 6 hrs of incubation. At 18 hrs of incubation, ALP activity also significantly increased in the PGE2 (10⁻9 to 10⁻6 M)-treated scale. In the case of osteoclasts, TRAP activity tended to increase at 6 hrs of incubation, and then significantly increased at 18 hrs of incubation by PGE2 (10(-7) to 10⁻6 M) treatment. At 18 hrs of incubation, the mRNA expression of osteoclastic markers (TRAP and cathepsin K) and receptor activator of the NF-κB ligand (RANKL), an activating factor of osteoclasts expressed in osteoblasts, increased in PGE2 treated-scales. Thus, PGE2 acts on osteoblasts, and then increases the osteoclastic activity in the scales of goldfish as it does in the bone of mammals. In an in vivo experiment, plasma calcium levels and scale TRAP and ALP activities in the PGE2-injencted goldfish increased significantly. We conclude that, in teleosts, PGE2 activates both osteoblasts and osteoclasts and participates in calcium metabolism.


Assuntos
Cálcio/fisiologia , Dinoprostona/farmacologia , Carpa Dourada/fisiologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Animais , Catepsina K/genética , Catepsina K/metabolismo , Regulação da Expressão Gênica/fisiologia , Tegumento Comum/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatase Ácida Resistente a Tartarato , Técnicas de Cultura de Tecidos
13.
Methods Mol Biol ; 2368: 267-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647261

RESUMO

To understand gravity resistance in plants, it is necessary to analyze the changes induced when the magnitude of gravity in a growth environment is modified. Microgravity in space provides appropriate conditions for analyzing gravity resistance mechanisms. Experiments carried out in space involve a large number of constraints and are quite different from ground-based experiments. Here, we describe basic procedures for space-based experiments to study gravity resistance in plants. An appropriate cultivation chamber must be selected according to the growing period of the plants and the purpose of the experiment. After cultivation, the plant material is fixed with suitable fixatives in appropriate sample storage containers such as the Chemical Fixation Bag. The material is then analyzed with a variety of methods, depending on the purpose of the experiment. Plant material fixed with the RNAlater® solution can be used sequentially to determine the mechanical properties of the cell wall, RNA extraction (which is necessary for gene-expression analysis), estimate the enzyme activity of cell wall proteins, and measure the levels and compositions of cell wall polysaccharides. The plant material can also be used directly for microscopic observation of cellular components such as cortical microtubules.


Assuntos
Hipergravidade , Plantas , Ausência de Peso , Parede Celular , Microtúbulos , Voo Espacial
14.
Plants (Basel) ; 11(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406935

RESUMO

The International Space Station (ISS) provides a precious opportunity to study plant growth and development under microgravity (micro-G) conditions. In this study, four lines of Arabidopsis seeds (wild type, wild-type MCA1-GFP, mca1-knockout, and MCA1-overexpressed) were cultured on a nylon lace mesh placed on Gelrite-solidified MS-medium in the Japanese experiment module KIBO on the ISS, and the entanglement of roots with the mesh was examined under micro-G and 1-G conditions. We found that root entanglement with the mesh was enhanced, and root coiling was induced under the micro-G condition. This behavior was less pronounced in mca1-knockout seedlings, although MCA1-GFP distribution at the root tip of the seedlings was nearly the same in micro-G-grown seedlings and the ground control seedlings. Possible involvement of MCA1 in the root entanglement is discussed.

15.
Plants (Basel) ; 11(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35161447

RESUMO

How microgravity in space influences plant cell growth is an important issue for plant cell biology as well as space biology. We investigated the role of cortical microtubules in the stimulation of elongation growth in Arabidopsis (Arabidopsis thaliana) hypocotyls under microgravity conditions with the Resist Tubule space experiment. The epidermal cells in the lower half of the hypocotyls of wild-type Columbia were longer in microgravity than at on-orbit 1 g, which precipitated an increase in the entire hypocotyl length. In the apical region, cortical microtubules adjacent to the outer tangential wall were predominantly transverse to the long axis of the cell, whereas longitudinal microtubules were predominant in the basal region. In the 9th to 12th epidermal cells (1 to 3 mm) from the tip, where the modification of microtubule orientation from transverse to longitudinal directions (reorientation) occurred, cells with transverse microtubules increased, whereas those with longitudinal microtubules decreased in microgravity, and the average angle with respect to the transverse cell axis decreased, indicating that the reorientation was suppressed in microgravity. The expression of tubulin genes was suppressed in microgravity. These results suggest that under microgravity conditions, the expression of genes related to microtubule formation was downregulated, which may cause the suppression of microtubule reorientation from transverse to longitudinal directions, thereby stimulating cell elongation in Arabidopsis hypocotyls.

16.
Heliyon ; 8(8): e10266, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061033

RESUMO

Nowadays, ordinary people can travel in space, and the possibility of extended durations in an environment such as moon of the Earth and Mars with higher space radiation exposures compared to past missions, is increasing. Until now, the physical doses of space radiation have been measured, but measurement of direct biological effects has been hampered by its low dose and low dose-rate effect. To assess the biological effects of space radiation, we launched and kept frozen mouse embryonic stem (ES) cells in minus eighty degree Celsius freezer in ISS (MELFI) on the International Space Station (ISS) for a maximum of 1,584 days. The passive dosimeter for life science experiments in space (PADLES) was attached on the surface of the sample case of the ES cells. The physical dosimeter measured the absorbed dose in water. After return, the frozen cells were thawed and cultured and their chromosome aberrations were analyzed. Comparative experiments with proton and iron ion irradiation were performed at particle accelerators on Earth. The wild-type ES cells showed no differences in chromosomal aberrations between the ground control and ISS exposures. However, we detected an increase of chromosome aberrations in radio-sensitized histone H2AX heterozygous-deficient mouse ES cells and found that the rate of increase against the absorbed dose was 1.54-fold of proton irradiation at an accelerator. On the other hand, we estimated the quality factor of space radiation as 1.48 ± 0.2. using formulas of International Commission of Radiation Protection (ICRP) 60. The relative biological effectiveness (RBE) observed from our experiments (1.54-fold of proton) was almost equal (1.04-fold) to the physical estimation (1.48 ± 0.2). It should be important to clarify the relation between biological effect and physical estimates of space radiation. This comparative study paves a way to reveal the complex radiation environments to reduce the uncertainty for risk assessment of human stay in space.

17.
NPJ Microgravity ; 7(1): 33, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471121

RESUMO

Epigenetic changes during long-term spaceflight are beginning to be studied by NASA's twin astronauts and other model organisms. Here, we evaluate the epigenetic regulation of gene expression in space-flown C. elegans by comparing wild type and histone deacetylase (hda)-4 mutants. Expression levels of 39 genes were consistently upregulated in all four generations of adult hda-4 mutants grown under microgravity compared with artificial Earth-like gravity (1G). In contrast, in the wild type, microgravity-induced upregulation of these genes occurred a little. Among these genes, 11 contain the domain of unknown function 19 (DUF-19) and are located in a cluster on chromosome V. When compared with the 1G condition, histone H3 trimethylation at lysine 27 (H3K27me3) increased under microgravity in the DUF-19 containing genes T20D4.12 to 4.10 locus in wild-type adults. On the other hand, this increase was also observed in the hda-4 mutant, but the level was significantly reduced. The body length of wild-type adults decreased slightly but significantly when grown under microgravity. This decrease was even more pronounced with the hda-4 mutant. In ground-based experiments, one of the T20D4.11 overexpressing strains significantly reduced body length and also caused larval growth retardation and arrest. These results indicate that under microgravity, C. elegans activates histone deacetylase HDA-4 to suppress overregulation of several genes, including the DUF-19 family. In other words, the expression of certain genes, including negative regulators of growth and development, is epigenetically fine-tuned to adapt to the space microgravity.

18.
Microscopy (Oxf) ; 70(6): 536-544, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34264299

RESUMO

Plant roots change their morphological traits in order to adapt themselves to different environmental conditions, resulting in the alteration of the root system architecture. To understand this mechanism, it is essential to visualize the morphology of the entire root system. To reveal effects of long-term alteration of gravity environment on root system development, we have performed an experiment in the International Space Station using Arabidopsis plants and obtained dried root systems grown in rockwool slabs. The X-ray computed tomography (CT) technique using industrial X-ray scanners has been introduced to visualize the root system architecture of crop species grown in soil in 3D non-invasively. In the case of the present study, however, the root system of Arabidopsis is composed of finer roots compared with typical crop plants and rockwool is also composed of fibers having similar dimension to that of the roots. A higher spatial resolution imaging method is required for distinguishing roots from rockwool. Therefore, in the present study, we tested refraction-contrast X-ray micro-CT using coherent X-ray optics available at the beamline of the synchrotron radiation facility SPring-8 for bio-imaging. We have found that a wide field of view but with low resolution obtained at the experimental Hutch 3 of this beamline provided an overview map of the root systems, while a narrow field of view but with high resolution obtained at the experimental Hutch 1 provided an extended architecture of the secondary roots, by a clear distinction between roots and individual rockwool fibers, resulting in the successful tracing of these roots from their basal regions.

19.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34117068

RESUMO

Space radiation may cause DNA damage to cells and concern for the inheritance of mutations in offspring after deep space exploration. However, there is no way to study the long-term effects of space radiation using biological materials. Here, we developed a method to evaluate the biological effect of space radiation and examined the reproductive potential of mouse freeze-dried spermatozoa stored on the International Space Station (ISS) for the longest period in biological research. The space radiation did not affect sperm DNA or fertility after preservation on ISS, and many genetically normal offspring were obtained without reducing the success rate compared to the ground-preserved control. The results of ground x-ray experiments showed that sperm can be stored for more than 200 years in space. These results suggest that the effect of deep space radiation on mammalian reproduction can be evaluated using spermatozoa, even without being monitored by astronauts in Gateway.

20.
Biomed Res ; 41(6): 279-288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268672

RESUMO

Osteocytes, osteoblasts (bone-forming cells), and osteoclasts (bone-resorbing cells) are the primary types of cells that regulate bone metabolism in mammals. Sclerostin produced in bone cells activates osteoclasts, inhibiting bone formation; excess production of sclerostin, therefore, leads to the loss of bone mass. Fish scales have been reported to have morphological and functional similarities to mammalian bones, making them a useful experimental system for analyzing vertebrate bone metabolism in vitro. However, whether fish scales contain cells producing sclerostin and/or osteocytes has not been determined. The current study demonstrated, for the first time, that sclerostin-containing cells exist in goldfish scales. Analysis of the distribution and shape of sclerostin-expressing cells provided evidence that osteoblasts produce sclerostin in goldfish scales. Furthermore, our results found that osteocyte-like cells exist in goldfish scales, which also produce sclerostin. Finally, we demonstrated that microgravity in outer space increased the level of sclerostin in the scales of goldfish, a finding suggesting that the induction of sclerostin is the mechanism underlying the activation of osteoclasts under microgravity.


Assuntos
Proteínas de Peixes/genética , Glicoproteínas/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Regeneração/genética , Ausência de Peso , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Escamas de Animais , Animais , Diferenciação Celular , Feminino , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/metabolismo , Carpa Dourada/genética , Carpa Dourada/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Osteoblastos/citologia , Osteoclastos/citologia , Osteócitos/citologia , Voo Espacial
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa