Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Environ Geochem Health ; 40(4): 1585-1599, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29392546

RESUMO

Groundwater contamination with high arsenic (As) levels has caused serious health problem in Jianghan Plain. This study presents a framework to evaluate the results and their probable influencing factors of non-carcinogenic risk and carcinogenic risk in Shahu Village. An appropriate health risk assessment for residents exposing to As through ingestion and dermal contact pathways is also discussed in the paper. Hazard quotient (HQ) and target cancer risk (TR) are adopted to compute the non-carcinogenic and carcinogenic effects for residents, respectively. Monte Carlo simulation technique is used to quantify the uncertainty of the risk assessment. The assessment results show that the HQs and TRs of 10-m-deep and 25-m-deep wells exhibit seasonal variations with higher values in rainy season and lower values in dry season. The HQ values exceeding 1 at the depths of 10 (from 0.09 to 23.21 m) and 25 m (from 0.29 to 130.55 m) account for 61 and 94%, respectively, which associate with the As contents distribution in the aquifer sediments. The estimated TR values at the depths of 10 (from 3.86E-05 to 1.04E-02) and 25 m (from 1.32E-04 to 5.87E-02) exceeding the highest acceptable standard (10-4) account for 95 and 100%, respectively. Comparison of the two exposure pathways, the ingestion exposure contributes much more than the dermal contact exposure for both non-carcinogenic risk and carcinogenic risk. The results of sensitivity analysis indicate that a more accurate measurement and better definition of probability distributions for As concentration in the groundwater can increase the accuracy of health risk assessment in Jianghan Plain. The findings demonstrate the importance of the drinking water safety, and the government should take measures to ensure the drinking water safety.


Assuntos
Arsênio/análise , Arsênio/toxicidade , Exposição Dietética , Água Potável/análise , Exposição Ambiental , Água Subterrânea/química , Pele/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , China , Medição de Risco
2.
Environ Monit Assess ; 190(10): 599, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30238229

RESUMO

East Lake is a shallow lake (in Wuhan, China) where cyanobacteria blooms occurred frequently from 1970 to 1985. During the study period, all Carlson trophic state index values were > 50, indicating that East Lake is in a eutrophic state. In this study, phycocyanin concentrations were measured through phycocyanin fluorometry for rapid assessment of cyanobacterial abundance. The smoothing splines of the optimal generalized additive model (GAM) indicated that Secchi depth (SD), total phosphorus (TP) and dissolved oxygen (DO) concentrations, electrical conductivity (EC), chemical oxygen demand (COD), and ratios of total nitrogen (TN) to TP (TN:TP) were the main environmental factors in a moderate nonlinear relationship with cyanobacterial phycocyanin concentrations in East Lake. The shape of the GAM smoother can be used to quantify the relationship between a response variable and an explanatory variable in the scatterplot. Phycocyanin concentrations were sharply and negatively related to both SD and EC when the SD was 20-80 cm and EC was > 270 mg/L. Phycocyanin concentrations increased with concentrations of TP, DO, and COD. Phycocyanin concentrations increased sharply with TP concentrations when TP concentrations were > 0.10 mg/L and approached to a constant when DO concentrations were > 8.20 mg/L. Approximately, 85% of the phycocyanin concentrations were negatively correlated with TN:TP of < 26. In summary, organic compounds and TP were inferred to the key factors limiting the potential growth of cyanobacteria in East Lake. These change points/thresholds of smoothing splines of aforementioned variables may serve as a framework for managing the cyanobacterial growth.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Modelos Estatísticos , Ficocianina/análise , China , Cianobactérias/isolamento & purificação , Monitoramento Ambiental , Eutrofização , Fluorescência , Fluorometria , Lagos/química , Nitrogênio/análise , Fósforo/análise
3.
Environ Int ; 183: 108361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091821

RESUMO

Due to the implementation of air pollution control measures in China, air quality has significantly improved, although there are still additional issues to be addressed. This study used the long-term trends of air pollutants to discuss the achievements and challenges in further improving air quality in China. The Kolmogorov-Zurbenko (KZ) filter and multiple-linear regression (MLR) were used to quantify the meteorology-related and emission-related trends of air pollutants from 2014 to 2022 in China. The KZ filter analysis showed that PM2.5 decreased by 7.36 ± 2.92% yr-1, while daily maximum 8-h ozone (MDA8 O3) showed an increasing trend with 3.71 ± 2.89% yr-1 in China. The decrease in PM2.5 and increase in MDA8 O3 were primarily attributed to changes in emission, with the relative contribution of 85.8% and 86.0%, respectively. Meteorology variations, including increased ambient temperature, boundary layer height, and reduced relative humidity, also contributed to the reduction of PM2.5 and the enhancement of MDA8 O3. The emission-related trends of PM2.5 and MDA8 O3 exhibited continuous decrease and increase, respectively, from 2014 to 2022, while the variation rates slowed during 2018-2020 compared to that during 2014-2017, highlighting the challenges in further improving air quality, particularly in simultaneously reducing PM2.5 and O3. This study recommends reducing NH3 emissions from the agriculture sector in rural areas and transport emissions in urban areas to further decrease PM2.5 levels. Addressing O3 pollution requires the reduction of O3 precursor gases based on site-specific atmospheric chemistry considerations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Ozônio/análise , China , Material Particulado/análise
4.
Environ Pollut ; 333: 122077, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343912

RESUMO

Vehicle exhaust and oil fuel evaporation emit volatile organic compounds (VOCs). The differences in VOC compositions and their effects determined using different methods have not been addressed sufficiently. In this study, VOC samples are obtained from single gasoline and diesel vehicle exhausts using a portable emission measurement system, from a tunnel in Yichang City, and from gasoline and diesel evaporation at gas stations. A total of 107 VOCs are analysed. The calculated VOC source profiles (based on VOC source profiles of single-vehicle type and vehicle fleet composition in the tunnel) and the tested source profiles (from a tunnel test) are compared. The results show that gasoline burning can reduce alkenes from a mass fraction of 53.1% (for evaporation) to 3.6% (for burning), as well as increase the mass fraction of alkenes from 1.3% (for diesel evaporation) to 34.0% (for diesel burning). The calculated VOC source profiles differed from the tested VOC source profiles, with a coefficient of divergence of 0.6. Ethane, ethylene, n-undecane, and n-dodecane are used to distinguish VOCs in gasoline and diesel exhausts. Cis-2-butene, 2-methylpentane, m/p-xylene, o-xylene, and n-decane can be used to separate gasoline from diesel. The xylene/ethylbenzene ratios accurately reveal the photochemical age. Gasoline burning increases health risks associated with VOCs compared with gasoline evaporation. Furthermore, it modifies the main contributor to ozone formation potential. This study is expected to facilitate refined VOC source apportionment and studies pertaining to speciated emission inventories.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Gasolina/análise , Ozônio/análise , Alcenos/análise , Monitoramento Ambiental , China
5.
Heliyon ; 9(8): e18776, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560633

RESUMO

Recently GeSe has developed as a promising light harvesting material by enjoying to its optical and electrical features as well as earth-abundant and low-toxic constituent elements. Nevertheless, the power conversion efficiency of GeSe-based solar cells yet lags far behind the Shockley-Queisser limit. In this work, we systematically designed, simulated and analyzed the highly efficient GeSe thin-film solar cells by SCAPS-1D. The influence of thickness and defect density of light harvest material, GeSe/CdS interface defect density, electron transport layer (ETL), electrode work function and hole transport layer (HTL) on the device output are carefully analyzed. By optimizing the parameters (thickness, defect, concentration, work function, ETL and HTL), an impressive PCE of 17.98% is delivered along with Jsc of 37.11 mA/cm2, FF of 75.53%, Voc of 0.61 V. This work offers theoretical guidance for the design of highly efficient GeSe thin film solar cells.

6.
Adv Sci (Weinh) ; 10(30): e2303414, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668266

RESUMO

Sb2 S3 is rapidly developed as light absorber material for solar cells due to its excellent photoelectric properties. However, the use of the organic hole transport layer of Spiro-OMeTAD and gold (Au) in Sb2 S3 solar cells imposes serious problems in stability and cost. In this work, low-cost molybdenum (Mo) prepared by magnetron sputtering is demonstrated to serve as a back electrode in superstrate structured Sb2 S3 solar cells for the first time. And a multifunctional layer of Se is inserted between Sb2 S3 /Mo interface by evaporation, which plays vital roles as: i) soft loading of high-energy Mo particles with the help of cottonlike-Se layer; ii) formation of surficial Sb2 Se3 on Sb2 S3 layer, and then reducing hole transportation barrier. To further alleviate the roll-over effect, a pre-selenide Mo target and consequentially form a MoSe2 is skillfully sputtered, which is expected to manipulate the band alignment and render an enhanced holes extraction. Impressively, the device with an optimized Mo electrode achieves an efficiency of 5.1%, which is one of the highest values among non-noble metal electrode based Sb2 S3 solar cells. This work sheds light on the potential development of low-cost metal electrodes for superstrate Sb2 S3 devices by carefully designing the back contact interface.

7.
Sci Total Environ ; 814: 151957, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838911

RESUMO

Atmospheric ammonia (NH3) is one of the most crucial precursors of secondary inorganic aerosols. However, its emission control is still weakness over China. NH3 emission inventories of 2015 with and without considering a set of refined emission reduction strategies covering seven major NH3 emission sources were constructed in Central China. GEOS-Chem model simulations were conducted to quantify the benefits of NH3 emission reduction on PM2.5 mitigation in four typical months (January, April, July and October). The results showed that these control strategies could reduce approximately 47.0% (152 Gg) of the total NH3 emissions in Hubei Province, with the agricultural (livestock and fertilizer application) source being reduced the most (133 Gg). NH3 had a significant nonlinear relationship with sulfate, nitrate, ammonium and PM2.5. NH3 emission reduction exerted less effect on sulfate mitigations (the annual average sensitivity was 4.5%), but it obviously alleviated nitrate, ammonium and thus PM2.5, with the annual average sensitivities of 81.9%, 34.8% and 22.0%, respectively. The average provincial concentrations of PM2.5 were alleviated by 11.2% in January, 10.6% in October, 10.2% in April and 9.3% in July through NH3 emission reduction by 47.0%. The reduction benefits were more pronounced in high NH3 emission areas, such as Yichang, with the PM2.5 reduction of 14.4% in January. This research could provide scientific support for formulating NH3 emission reduction policies to further mitigate PM2.5 pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Amônia/análise , China , Monitoramento Ambiental , Material Particulado/análise
8.
Sci Bull (Beijing) ; 67(3): 263-269, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546075

RESUMO

The use of organic hole transport layer (HTL) Spiro-OMeTAD in various solar cells imposes serious stability and cost problems, and thus calls for inorganic substitute materials. In this work, a novel inorganic MnS film prepared by thermal evaporation has been demonstrated to serve as a decent HTL in high-performance Sb2(S, Se)3 solar cells, providing a cost-effective all-inorganic solution. A low-temperature air-annealing process for the evaporated MnS layer was found to result in a significant positive effect on the power conversion efficiency (PCE) of Sb2(S, Se)3 solar cells, due to its better-matched energy band alignment after partial oxidation. Impressively, the device with the optimized MnS HTL has achieved an excellent PCE of about 9.24%, which is the highest efficiency among all-inorganic Sb2(S, Se)3 solar cells. Our result has revealed that MnS is a feasible substitute for organic HTL in Sb-based solar cells to achieve high PCE, low cost, and high stability.

9.
Environ Int ; 158: 107001, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991261

RESUMO

Residential coal combustion (RCC) emission exhibited obvious daily variation, while no real-time estimation of air pollutants from RCC has been reported, as the shortages of corresponding activity dataset and emission factors with high time resolution. A real-time monitoring platform for RCC emission was established. Hourly emission factors of 18 typed of TEs from eleven kinds of chunk coals and nine kinds of honeycomb coals burning in China were obtained. The monthly and hourly coal consumption amounts were calculated with reference and our field survey. Then the hourly TEs emission inventories from RCC were established in China. GEOS-Chem and Risk Quotients Models were utilized to map the spatialized health risks of hazardous elements, including the gridded hazard index and carcinogenic risk. The result indicated that the EFs of TEs would be underestimated if the tests only consider flaming conditions. Cu, K, Ca, Zn, and Co were the top five elements from RCC, with corresponding emission amounts as 1397.7, 1054.0, 676.0, 623.5 and 420 tons in 2017, respectively. K, Ti, Fe, Sn, and Sb showed hourly peak values under flaming dominated periods, accounting for 48.2%, 45.9%, 31.8%, 42.8%, and 33.8% of their daily emissions. Other elements (e.g., V, Co, As, Hg and Pb) exhibited higher emissions under smoldering dominated period in nighttime, accounting for 22.2%, 32.9%, 27.6%, 34.7%, and 28.4% of their daily emissions. TEs emission from RCC closely follows the habits of human daily cooking and heating activity. The national HI were lower than the acceptable level (HI ≤ 1) except Sichuan Province (up to 1.2). Higher carcinogenic risks (≥1 × 10-6) occurred in parts of Sichuan, Shanxi, Hunan and Hubei, which were up to 2.0 × 10-5. The high-resolution TEs emission inventories could be useful for future modeling works on the formation and evolution of air pollution and are helpful for human exposure assessment.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Poluentes Atmosféricos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental , Humanos
10.
Sci Total Environ ; 814: 151950, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838559

RESUMO

Residential coal combustion (RCC) emission demonstrates obvious daily variation, while no real-time estimation of air pollutants from RCC has been reported, as the limitation of hourly activity data and emission factors. With a dilution sampling system, a high-precision electronic balance, and an Aethalometer Model AE33, a real-time monitoring platform for RCC emission was established. Hourly emission factors (EFs) of BC and absorption emission factors (AEFs) of BrC from eleven kinds of chunk coals and nine kinds of honeycomb coals burning in China were obtained. The monthly and hourly coal consumption amounts were calculated with the activity data from literature reviews and a field survey. The first hourly BC and absorption cross section of BrC emission inventories from RCC were established in China. The historical emission trends (2003-2017) indicated that the policy has rapidly controlled the emission of BC and ACSBrC from RCC in urban area (26.7% and 31.8% decreased, respectively in 2013). While in rural areas, their emission continually increased by 1.2% ~ 5.3% until more strict law enacted in 2017. Emissions of BC and ACSBrC in winter seasons were 60.1 Gg and 1064.1 Gm2, which accounted for 54.3% and 55.1% of the total BC and ACSBrC emissions correspondingly. The peak values of hourly emission of BC and ACSBrC (in 370 nm) normally appeared at 19:00-23:00, accounting for 43.0% and 41.5% of their total daily emission. The low emission periods were at cooking times including 7:00, 12:00, and 17:00 of a day and the whole emission of BC and ACSBrC for the three periods accounted for 1.8% and 2.3% of their daily emission. This high-resolution BC and ACSBrC emission inventories can be useful for future modeling works on the formation and evolution of a haze event, the smoke aging and transportation, as well as corresponding climate and human health effects.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Poluentes Atmosféricos/análise , Carbono/análise , China , Carvão Mineral/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Fuligem/análise
11.
ACS Appl Mater Interfaces ; 13(38): 45726-45735, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34520174

RESUMO

Hydrothermal deposition is emerging as a highly potential route for antimony-based solar cells, in which the Sb2(S,Se)3 is typically in situ grown on a common toxic CdS buffer layer. The narrow band gap of CdS causes a considerable absorption in the short-wavelength region and then lowers the current density of the device. Herein, TiO2 is first evaluated as an alternative Cd-free buffer layer for hydrothermally derived Sb2S3 solar cells. But it suffers from a severely inhomogeneous Sb2S3 coverage, which is effectively eliminated by inserting a Zn(O,S) layer. The surface atom of sulfur in Zn(O,S) uniquely provides a chemical bridge to enable the quasi-epitaxial deposition of Sb2S3 thin film, confirming by both morphology and binding energy analysis using DFT. Then the results of the first-principles calculations also show that Zn(O,S)/Sb2S3 has a more stable structure than TiO2/Sb2S3. The resultant perfect Zn(O,S)/Sb2S3 junction, with a suitable band alignment and excellent interface contact, delivers a remarkably enhanced JSC and VOC for Sb2S3 solar cells. The device efficiency with the TiO2/Zn(O,S) buffer layer boosts from 0.54% to 3.70% compared with the counterpart of TiO2, which has a champion efficiency of Cd-free Sb2S3 solar cells with a structure of ITO/TiO2/Zn(O,S)/Sb2S3/Carbon/Ag by in situ hydrothermal deposition. This work provides a guideline for the hydrothermal deposition of antimony-based films upon a nontoxic buffer layer.

12.
Sci Total Environ ; 751: 141741, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32889467

RESUMO

Source profiles of volatile organic compounds (VOCs) emitted from the evaporation of various fuels, industrial raw materials, processes and products are still limited in China. The impact of ambient temperature on the VOC released from these fugitive emission sources has also been rarely reported. In order to establish VOC source profiles for thirteen volatile emission sources, a sampling campaign was conducted in Central China, and five types of sources were investigated both in winter and summer. The dominant VOC groups varied in different sources, and they were alkanes (78.6%), alkenes (53.1%), aromatics (55.1%), halohydrocarbons (80.7%) and oxygenated VOCs (OVOCs) (76.0%), respectively. Ambient temperature showed different impacts on VOC source profiles and specific species ratios. The mass percentages of halohydrocarbons emitted from color printing and waste transfer station in summer were 42 times and 20 times higher than those in winter, respectively. The mass percentages of OVOCs emitted from car painting, waste transfer station and laundry emission sources were much higher in summer (7.9-27.8%) than those in winter (0.8-2.6%). On the contrary, alkanes from color printing, car painting and waste transfer stations were about 11, 4 and 5 times higher in winter than those in summer, respectively. The coefficient of divergence values for the source profiles obtained in winter and summer ranged in 0.3-0.7, indicating obvious differences of source profiles. Benzene/toluene ratio varied in 0.00-0.76, and it was in the range of 0.02-0.50 in winter and 0.04-0.52 in summer for the same sources, respectively. Hexanal, isobutene, m,p-xylene, toluene, 2-methylacrolein, styrene, 1-hexane and cis-2-butene dominated the ozone formation potentials (OFP). The OFP summer/winter differences were 5-320 times by MIR method and 1-79 times by Propy-Equiv method, respectively. This study firstly gave direct evidence that ambient temperature modified the mass percentages of VOC species obviously. It is important for improving VOC source apportionment and chemical reactivity simulation.

13.
Sci Total Environ ; 789: 147966, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058574

RESUMO

Accurate source markers, source profiles and species-based emission factors (EFs) are currently the key limitations for source apportionment and emission inventory researches. Fine particles (PM2.5) were collected from stack gases of eight types of stationary sources with a dilution sampling system. The mass percentages and EFs of 89 kinds of chemical species in PM2.5 including water-soluble ions, elements, carbonaceous species and molecular organic species were obtained. Results showed that water-soluble ions (8%-54%) and elements (5%-45%) were the dominant chemical species. Palmitic acid (0.19%-0.62%) and stearic acid (0.21%-0.59%) were the most abundant organic species. PM2.5 source profiles of the eight sources were different from each other with the coefficient of divergence values all higher than 0.4. The addition of organic species could help to further distinguish them. The indicatory chemical components and specific species ratios were obtained by both a statistical equation and randomForest. These indicatory chemical components (e.g. F- for glass factory) and species ratios (e.g. K+/Mg2+ & OC/Mg for pharmaceutical factory) improved the current knowledges of their indicatory performance in source identification of ambient PM2.5. The EFs of PM2.5 from the eight stationary sources ranged from 0.019 to 51.6 kg t-1 of fuel used. The EFs of PM2.5 from the pharmaceutical factory were about 70-2600 times higher than other seven types of sources due to the lack of dust-removing devices. Certain EFs measured in this study were about 10-36,000 times lower than corresponding EFs estimated in previous studies which didn't perform field measurements, indicating the necessity for improving emission inventories continuously. This study contributes to identifying emission sources of PM2.5 especially for subtypes of stationary sources and to establishing species-based emission inventories.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Material Particulado/análise , Centrais Elétricas
14.
Huan Jing Ke Xue ; 41(3): 1107-1115, 2020 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-32608611

RESUMO

Wood and economic crops are still widely used in rural areas of China. Although their combustion is an important source of volatile organic compounds (VOCs), study on their emission characteristics is relatively weak. In this study, three kinds of wood (poplar, cedarwood, and citrus branches) and six economic crop straws (soybean stalk, sesame stalk, corn cob, cotton stalk, peanut stalk, and corn stalk) were selected and their burning was simulated in the laboratory. A dilution tunnel system was used to dilute the smoke, and then Tedlar bags were used to collect the smoke. The compositions of 102 VOCs were analyzed by Agilent 7820A/5977E gas chromatography/mass spectrometry. The ozone formation potential (OFP) of VOCs for different types of biomass burning was analyzed. The results indicated that there are differences in the VOC compositions of different types of biomass burning emissions. Ethane (11.1%), trans-2-pentene (15.4%), ethylene (8.3%), and dichloromethane (11.9%) are the main VOCs emitted from poplar and cedarwood burning. Toluene (49.8%) is the most abundant species of VOC emitted from burning of citrus branches. Ethylene (11.8%-17.5%) and acetone (9.2%-14.7%) are the main VOCs components of straw burning. Corn stalks, peanut stalks, and citrus branches have similar VOC source profiles, with the coefficient of divergence less than 0.1. The benzene/toluene ratio for biomass burning emissions obtained in this study and in the literature is in the range of 0.030-6.48. It is arguable that a value higher than 1 indicated the impact of biomass burning. The contributions of alkenens, oxygenated VOCs, and aromatic hydrocarbons to the OFP of biomass burning were 30.6%-80.3%, 6.5%-21.0%, and 3.8%-56.5%, respectively. The components contributing more than 10.0% to the OFP are ethylene, propylene, trans-2-pentene, cis-2-pentene, toluene, and propionaldehyde.

15.
Sci Total Environ ; 739: 140000, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540668

RESUMO

Wuhan was the first city to adopt the lockdown measures to prevent COVID-19 spreading, which improved the air quality accordingly. This study investigated the variations in chemical compositions, source contributions, and regional transport of fine particles (PM2.5) during January 23-February 22 of 2020, compared with the same period in 2019. The average mass concentration of PM2.5 decreased from 72.9 µg m-3 (2019) to 45.9 µg m-3 (2020), by 27.0 µg m-3. It was predominantly contributed by the emission reduction (92.0%), retrieved from a random forest tree approach. The main chemical species of PM2.5 all decreased with the reductions ranging from 0.85 µg m-3 (chloride) to 9.86 µg m-3 (nitrate) (p < 0.01). Positive matrix factorization model indicated that the mass contributions of seven PM2.5 sources all decreased. However, their contribution percentages varied from -11.0% (industrial processes) to 8.70% (secondary inorganic aerosol). Source contributions of PM2.5 transported from potential geographical regions showed reductions with mean values ranging from 0.22 to 4.36 µg m-3. However, increased contributions of firework burning, secondary inorganic aerosol, road dust, and vehicle emissions from transboundary transport were observed. This study highlighted the complex and nonlinear response of chemical compositions and sources of PM2.5 to air pollution control measures, suggesting the importance of regional-joint control.


Assuntos
Poluentes Atmosféricos/análise , Infecções por Coronavirus , Pandemias , Material Particulado/análise , Pneumonia Viral , Betacoronavirus , COVID-19 , Cidades , Monitoramento Ambiental , Humanos , SARS-CoV-2 , Emissões de Veículos/análise
16.
Sci Total Environ ; 703: 135505, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31759719

RESUMO

Petrochemical industry (PI) is an important emission sector of anthropogenic volatile organic compounds (VOCs). The health impacts of VOCs from PI have caused a wide attention by both scientists and publics. In this study, compositions, sources and health risks of VOCs at a typical petrochemical industrial park along the middle reach of Yangtze River were studied. The total VOC concentrations were in the range of 5.59 to 541 ppbv with a mean value of 54.8 ppbv. Alkanes (41.4 ±â€¯15.7%) were the predominant group, followed by alkenes (19.9 ±â€¯18.3%), OVOCs (14.7 ±â€¯9.26%), halo hydrocarbon (11.2 ±â€¯6.42%), aromatics (8.17 ±â€¯5.08%), and acetylene (4.54 ±â€¯2.80%). Compound-specific health risk results showed that acrolein and 1,3-butadiene had the highest non-carcinogenic risk (expressed by hazard ratio, HR: 22.8) and carcinogenic risk (expressed by lifetime cancer risk, LCR: 6.7 × 10-3), respectively. Positive matrix factorization (PMF) model identified four VOC sources including fuel evaporation, industrial sources, ethylene industry and regional background with the average contributions of 35.6%, 12.0%, 26.5% and 25.9%, respectively. The receptor-originated approach combining the PMF model and conventional methods (HR and LCR) was used to assess the source-specific health risks. The non-cancer risks of four VOC sources were above safe level with regional background contributing most (38.3% or 4.91) to HR. The cancer risks of the four sources were below the tolerable level (<10-4) and regional background also contributed most, with relative contribution of 58.4% (or 10-4.22) to LCR. Our results are conductive to the formulation of countermeasures to reduce human exposure to ambient VOCs at petrochemical industrial parks in China.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , China , Indústrias
17.
J Bone Oncol ; 18: 100247, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31528536

RESUMO

BACKGROUND: The survival prediction of patients with chordoma is difficult to make due to the rarity of this oncologic disease. Our objective was to apply a nomogram to predict survival outcomes in individuals with chordoma of the skull base, vertebral column, and pelvis. METHODS: A total of 558 patients with chordoma between 1973 and 2014 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Independent prognostic factors in patients with chordoma were identified via univariate and multivariate Cox analysis. Then these prognostic factors were incorporated into a nomogram to predict 3- and 5-year overall survival and cancer-specific survival rates. Internal and external data were used to validate the nomograms. Concordance indices (C-indices) were used to estimate the accuracy of this nomogram system. RESULTS: A total of 558 patients were randomly assigned into a training cohort (n = 372) and a validation cohort (n = 186). Age, surgical stage, tumor size, histology, primary site, and use of surgery were identified as independent prognostic factors via univariate and multivariate Cox analysis (all p < 0.05) and further included to establish the nomogram. The C-indices for overall survival and cancer-specific survival prediction of the training cohort were 0.775 (95% confidence interval, 0.770-0.779) and 0.756 (95% confidence interval, 0.749 -0.762). The calibration plots both showed an excellent consistency between actual survival and nomogram prediction. CONCLUSION: Nomograms were constructed to predict overall survival and cancer-specific survival for patients with chordoma of the skull base, vertebral column, and pelvis. The nomogram could help surgeons to identify high risk of mortality and evaluate prognosis in patients with chordoma.

18.
Nanoscale ; 11(9): 3968-3978, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30768095

RESUMO

GeSe is considered as a potential absorber material for thin film solar cells owing to its ideal band gap, strong light absorption, remarkable air durability, Earth-abundance and non-toxic constituents. However, the high vapor pressure of GeSe at a temperature below its melting point makes it difficult to synthesize a high-quality GeSe film. To alleviate this limitation, in this work, a thermal evaporation combining a novel sandwiching post-annealing method was introduced to deposit high quality GeSe thin films with (100)-orientation. The self-assembling mechanism of the highly oriented GeSe film was carefully investigated by the systematic experiments and confirmed by the lowest total energy of the (100) crystal plane. Finally, the fully-inorganic, low-cost and non-toxic planar device with the superstrate configuration of FTO/TiO2/GeSe/carbon/Ag was also successfully fabricated. Notably, as a result, an impressive open circuit voltage (VOC) of 340 mV (maximum: 456 mV) was achieved, which is the highest VOC of GeSe solar cells reported so far. Furthermore, through current-voltage, capacitance-voltage profiling and drive level capacitance profiling measurements, it was demonstrated that the limiting factors of the GeSe solar cell performance were the narrow depletion width (138 nm) and the drastic recombination at the TiO2/GeSe interface.

19.
Environ Sci Pollut Res Int ; 26(31): 31793-31803, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31485941

RESUMO

Residential coal combustion is one of the main sources of ambient polycyclic aromatic hydrocarbons (PAHs). Updating its emission estimation is limited by the shortages of emission factors, especially for them in different particle sizes and from different combustion conditions. PAH emission factors (EFs) for nine size-segregated particle segments emitted from smoldering and flaming combustion of residential coals (four kinds of raw coals (RCs) and three kinds of honeycomb coal briquettes (HCBs)) were obtained in China, using a dilution sampling system. EFs of PAHs for the flaming and smoldering of HCB ranged from 1.32 to 2.04 mg kg-1 and 0.35 to 5.36 mg kg-1, respectively. The EFs of PAHs for RC flaming combustion varied from 0.50 to 218.96 mg kg-1. About 53.5-96.4% and 47.4-90.9% of PAHs concentrated in PM2.1 and PM1.1, respectively. Different fuel types and combustion conditions strongly affected the PAH EFs. The PAH EF for the RC was 0.3 times that for HCB in Guizhou, which implied that PAH EFs for RC combustion were not always higher than those from HCB burning. For different combustion conditions, the PAH EFs from flaming were more than 2.5 times higher than those from smoldering for HCB except in the Anhui region. Results indicated that current PAH EFs may not be universal, which may bias the establishment of control policies for toxic pollutants emitted from domestic coal burning. On average, 73.2 ± 15.5% of total PAH potential toxicity risks were concentrated in submicron particles. More size-segregated PAH EFs for residential coal combustion should be investigated considering combustion conditions with a uniform sampling method in China.


Assuntos
Poluentes Atmosféricos/análise , Carvão Mineral/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa