Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 198(11): 4217-4227, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28438900

RESUMO

Covalent modification of protein by drugs may disrupt self-tolerance, leading to lymphocyte activation. Until now, determination of the threshold required for this process has not been possible. Therefore, we performed quantitative mass spectrometric analyses to define the epitopes formed in tolerant and hypersensitive patients taking the ß-lactam antibiotic piperacillin and the threshold required for T cell activation. A hydrolyzed piperacillin hapten was detected on four lysine residues of human serum albumin (HSA) isolated from tolerant patients. The level of modified Lys541 ranged from 2.6 to 4.8%. Analysis of plasma from hypersensitive patients revealed the same pattern and levels of modification 1-10 d after the commencement of therapy. Piperacillin-responsive skin-homing CD4+ clones expressing an array of Vß receptors were activated in a dose-, time-, and processing-dependent manner; analysis of incubation medium revealed that 2.6% of Lys541 in HSA was modified when T cells were activated. Piperacillin-HSA conjugates that had levels and epitopes identical to those detected in patients were shown to selectively stimulate additional CD4+ clones, which expressed a more restricted Vß repertoire. To conclude, the levels of piperacillin-HSA modification that activated T cells are equivalent to the ones formed in hypersensitive and tolerant patients, which indicates that threshold levels of drug Ag are formed in all patients. Thus, the propensity to develop hypersensitivity is dependent on other factors, such as the presence of T cells within an individual's repertoire that can be activated with the ß-lactam hapten and/or an imbalance in immune regulation.


Assuntos
Antibacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Hipersensibilidade a Drogas/imunologia , Epitopos/imunologia , Haptenos/imunologia , Ativação Linfocitária , beta-Lactamas/imunologia , Adulto , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antígenos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Epitopos/química , Feminino , Haptenos/administração & dosagem , Haptenos/química , Haptenos/metabolismo , Humanos , Tolerância Imunológica , Masculino , Espectrometria de Massas , Piperacilina/administração & dosagem , Piperacilina/imunologia , Piperacilina/metabolismo , Albumina Sérica/química , Albumina Sérica/imunologia , Adulto Jovem , beta-Lactamas/administração & dosagem , beta-Lactamas/metabolismo
3.
Chem Res Toxicol ; 26(6): 963-75, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23668298

RESUMO

ß-Lactam antibiotics provide the cornerstone of treatment for respiratory exacerbations in patients with cystic fibrosis. Unfortunately, approximately 20% of patients develop multiple nonimmediate allergic reactions that restrict therapeutic options. The purpose of this study was to explore the chemical and immunological basis of multiple ß-lactam allergy through the analysis of human serum albumin (HSA) covalent binding profiles and T-cell responses against 3 commonly prescribed drugs; piperacillin, meropenem, and aztreonam. The chemical structures of the drug haptens were defined by mass spectrometry. Peripheral blood mononuclear cells (PBMC) were isolated from 4 patients with multiple allergic reactions and cultured with piperacillin, meropenem, and aztreonam. PBMC responses were characterized using the lymphocyte transformation test and IFN-γ /IL-13 ELIspot. T-cell clones were generated from drug-stimulated T-cell lines and characterized in terms of phenotype, function, and cross-reactivity. Piperacillin, meropenem, and aztreonam formed complex and structurally distinct haptenic structures with lysine residues on HSA. Each drug modified Lys190 and at least 6 additional lysine residues in a time- and concentration-dependent manner. PBMC proliferative responses and cytokine release were detected with cells from the allergic patients, but not tolerant controls, following exposure to the drugs. 122 CD4+, CD8+, or CD4+CD8+ T-cell clones isolated from the allergic patients were found to proliferate and release cytokines following stimulation with piperacillin, meropenem, or aztreonam. Cross-reactivity with the different drugs was not observed. In conclusion, our data show that piperacillin-, meropenem-, and aztreonam-specific T-cell responses are readily detectable in allergic patients with cystic fibrosis, which indicates that multiple ß-lactam allergies are instigated through priming of naïve T-cells against the different drug antigens. Characterization of complex haptenic structures on distinct HSA lysine residues provides a chemical basis for the drug-specific T-cell response.


Assuntos
Fibrose Cística/tratamento farmacológico , Hipersensibilidade a Drogas/imunologia , Haptenos/química , Hipersensibilidade/imunologia , Albumina Sérica/química , Linfócitos T/imunologia , Inibidores de beta-Lactamases/imunologia , beta-Lactamas/imunologia , Aztreonam/química , Aztreonam/imunologia , Fibrose Cística/complicações , Fibrose Cística/imunologia , Hipersensibilidade a Drogas/complicações , Haptenos/imunologia , Humanos , Hipersensibilidade/complicações , Meropeném , Estrutura Molecular , Piperacilina/química , Piperacilina/imunologia , Tienamicinas/química , Tienamicinas/imunologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamas/química , beta-Lactamas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa