Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 72: 82-96, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35257867

RESUMO

When lignocellulosic biomass is utilized as a fermentative substrate to produce biochemicals, the existence of a yeast strain resistant to inhibitory chemical compounds (ICCs) released from the biomass becomes critical. To achieve the purpose, in this study, Saccharomyces yeast strains from a NBRC yeast culture collection were used for exploration and evaluated in two different media containing ICCs that mimic one another but resemble the hydrolysate of real biomass. Among them, S. cerevisiae F118 strain shows robustness upon the fermentation with unique flocculation trait that was strongly responsive to ICC stress. When this strain was cultured in the presence of ICCs, its cell wall hydrophobicity increased dramatically, and reduced significantly when the ICCs were depleted, demonstrating that cell-surface hydrophobicity can also act as an adaptive response to the ICCs. Cells from the strain with the highest cell-wall hydrophobicity displayed progressively stronger flocculation, indicating that the F118 strain is having unique robustness under ICC stress. Gene expression perturbation analysis revealed that mot3 gene encoding regulatory Mot3p from the F118 strain was expressed in response to the concentration of ICCs. This gene was found to control expression of ygp1 gene that encoding Ygp1p, one of cell wall proteins. Deep sequencing analysis revealed that the Mot3p of the F118 strain features a unique insertion and deletion of nucleotides that encode glutamine or asparagine residues, particularly in N-terminal domain, as determined by comparison to the Mot3p sequence from the S288c strain, which was employed as a control strain. Furthermore, the cell wall hydrophobicity of the S288c strain was greatly enhanced and became ICC-responsive after gene swapping with the mot3 gene from the F118 strain. The gene-swapped S288c strain fermented 6-fold faster than the wild-type strain, producing 14.5 g/L of ethanol from 30 g/L of glucose consumed within 24 h in a medium containing the ICCs. These such modifications to Mot3p in unique locations in its sequence have a potential to change the expression of a gene involved in cell wall hydrophobicity and boosted the flocculation response to ICC stress, allowing for the acquisition of extraordinary robustness.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Parede Celular/genética , Parede Celular/metabolismo , Fermentação , Interações Hidrofóbicas e Hidrofílicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Bioresour Technol ; 245(Pt B): 1413-1420, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28610972

RESUMO

This work aimed to study the use of consolidated bioprocess (CBP) yeast expressing five cellulase genes (BGL, XYNII, EGII, CBHI and CBHII) for ethanol production from ionic liquid-pretreated bagasse and Laubholz unbleached Kraft pulp (LUKP). A proposed screening method shows that the optimal cellulase ratio varies for each biomass substrate, and thus it is essential to breed CBP yeast having optimal cellulase-displaying ratio for the target biomass. CBP yeast specialized towards bagasse produced 0.93g/l ethanol whiles that for LUKP produced 0.71g/l ethanol, which is approximately 4 and 2-fold, respectively, higher than that of the wild type. The cell-surface displayed enzymes synergistically contributed to the degradation of the biomass. The developed CBP yeast is a potential cheap source for consolidated bioprocessing of ethanol and the proposed screening method can be used for matching CBP yeast to a target biomass.


Assuntos
Celulose , Etanol , Biotecnologia , Fermentação , Líquidos Iônicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa