Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anal Chem ; 96(12): 4809-4816, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466895

RESUMO

As an effective ECL emitter, tetraphenylethene (TPE)-based molecules have recently been reported with aggregation-induced electrochemiluminescence (AIECL) property, while it is still a big challenge to control its aggregation states and obtain uniform aggregates with intense ECL emission. In this study, we develop three TPE derivatives carrying a pyridinium group, an alkyl chain, and a quaternary ammonium group via the Menschutkin reaction. The resulting molecules exhibit significantly red-shifted FL and enhanced ECL emissions due to the tunable reduction of the energy gap between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs). More importantly, the amphiphilicity of the as-developed molecules enables their spontaneous self-assembly into well-controlled spherical nanoaggregates, and the ECL intensity of nanoaggregates with 3 -CH2- (named as C3) is 17.0-fold higher compared to that of the original 4-(4-(1,2,2-triphenylvinyl)phenyl)pyridine (TPP) molecule. These cationic nanoaggregates demonstrate a high affinity toward bacteria, and an ECL sensor for the profiling of Escherichia coli (E. coli) was developed with a broad linear range and good selectivity in the presence of an E. coli-specific aptamer. This study provides an effective way to enhance the ECL emission of TPE molecules through their derivatization and a simple way to prepare well-controlled AIECL nanoaggregates for ECL application.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Limite de Detecção , Medições Luminescentes/métodos , Fotometria , Oligonucleotídeos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
2.
Mikrochim Acta ; 191(4): 207, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499896

RESUMO

A miniature L-glutamate (L-Glu) biosensor is described based on Prussian blue (PB) modification with improved stability by using self-assembled monolayers (SAMs) technology and polydopamine (PDA). A gold microelectrode (AuME) was immersed in NH2(CH2)6SH-ethanol solution, forming well-defined SAMs via thiol-gold bonding chemistry which increased the number of deposited Prussian blue nanoparticles (PBNPs) and confined them tightly on the AuME surface. Then, dopamine solution was dropped onto the PBNPs surface and self-polymerized into PDA to protect the PB structure from destruction. The PDA/PB/SAMs/AuME showed improved stability through CV measurements in comparison with PB/AuME, PB/SAMs/AuME, and PDA/PB/AuME. The constructed biosensor achieved a high sensitivity of 70.683 nA µM-1 cm-2 in the concentration range 1-476 µM L-Glu with a low LOD of 0.329 µM and performed well in terms of selectivity, reproducibility, and stability. In addition, the developed biosensor was successfully applied to the determination of L-Glu in tomato juice, and the results were in good agreement with that of high-performance liquid chromatography (HPLC). Due to its excellent sensitivity, improved stability, and miniature volume, the developed biosensor not only has a promising potential for application in food sample analysis but also provides a good candidate for monitoring L-Glu level in food production.


Assuntos
Técnicas Biossensoriais , Ferrocianetos , Ácido Glutâmico , Indóis , Polímeros , Reprodutibilidade dos Testes , Ouro/química , Técnicas Biossensoriais/métodos
3.
Small ; 17(6): e2006178, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369882

RESUMO

Nitrogen-coordinated single-atom catalysts (SACs) have emerged as a new frontier for accelerating oxygen reduction reaction (ORR) owing to the optimal atom efficiency and fascinating properties. However, augmenting the full exposure of active sites is a crucial challenge in terms of simultaneously pursuing high metal loading of SACs. Here, petal-like porous carbon nanosheets with densely accessible Fe-N4 moieties (FeNC-D) are constructed by combining the space-confinement of silica and the coordination of diethylenetriaminepentaacetic acid. The resulted FeNC-D catalyst possesses an enhanced mesoporosity and a balanced hydrophobicity/hydrophilicity, which can facilitate mass transport and advance the exposure of inaccessible Fe-N4 sites, resulting in efficient utilization of active sites. By virtue of the petal-like porous architecture with maximized active site density, FeNC-D demonstrates superior ORR performance in a broad pH range. Remarkably, when utilized as the air cathode in Zn-air battery (ZAB) and microbial fuel cell (MFC), the FeNC-D-based device displays a large power density (356 mW cm-2 for ZAB and 1041.3 mW m-2 for MFC) and possesses remarkable stability, substantially outperforming the commercial Pt/C catalyst.


Assuntos
Fontes de Energia Bioelétrica , Oxigênio , Eletrodos , Nitrogênio , Porosidade
4.
Small ; 17(19): e2007326, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33783972

RESUMO

A valid strategy for amplifying the oxygen reduction reaction (ORR) efficiency of non-noble electrocatalyst in both alkaline and acid electrolytes by decorated with a layer of biomass derivative nitrogen-doped carbon (NPC) is proposed. Herein, a top-down strategy for the generally fabricating NPC matrix decorated with trace of metal oxides nanoparticles (FeOx NPs) by a dual-template assisted high-temperature pyrolysis process is reported. A high-activity FeOx /FeNC (namely Hemin/NPC-900) ORR electrocatalyst is prepared via simply carbonizing the admixture of Mg5 (OH)2 (CO3 )4 and NaCl as dual-templates, melamine and acorn shells as nitrogen and carbon source, hemin as a natural iron and nitrogen source, respectively. Owing to its unique 3D porous construction, large BET areas (819.1 m2 ∙g-1 ), and evenly dispersed active sites (FeNx , CN, and FeO parts), the optimized Hemin/NPC-900 catalyst displays comparable ORR catalytic activities, remarkable survivability to methanol, and preferable long-term stability in both alkali and acid electrolyte compared with benchmark Pt/C. More importantly, density function theory computations certify that the interaction between Fe3 O4 nanoparticles and arm-GN (graphitic N at armchair edge) active sites can effectually promote ORR electrocatalytic performance by a lower overpotential of 0.81 eV. Accordingly, the research provides some insight into design of low-cost non-precious metal ORR catalysts in theory and practice.


Assuntos
Carbono , Oxigênio , Biomassa , Catálise , Oxirredução , Porosidade
5.
Environ Res ; 201: 111603, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214563

RESUMO

Hollow nanospheres play a pivotal role in the electro-catalytic oxygen reduction reaction (ORR), which is a crucial step in microbial fuel cell (MFC) device. Herein, the hollow nitrogen-doped carbon nanospheres (HNCNS) were synthesized with the sacrifice of silica coated carbon nanospheres (CNS@SiO2) as template. HNCNS remarkably enhanced the ORR activity compared to the solid carbon and solid silica spheres. By tuning calcination temperature (800-1100 °C), the surface chemistry properties of HNCNS were effectively regulated. The optimal HNCNS-1000 catalyst which was calcined at 1000 °C exhibited the highest ORR activity in neutral media with the onset potential of 0.255 V and half-wave potential of -0.006 V (vs. Ag/AgCl). Single chamber MFC (SCMFC) assembled with HNCNS-1000 cathode unveiled comparable activity to a conventional Pt/C reference. It showed the highest maximum power density of 1307 ± 26 mW/m2, excellent output stability of 5.8% decline within 680 h, chemical oxygen demand (COD) removal of 94.0 ± 0.3% and coulombic efficiency (CE) of 7.9 ± 0.9%. These excellent results were attributed to a cooperative effect of the optimized surface properties (e.g., structural defects, relative content of pyrrolic nitrogen and specific surface area) and the formation of hollow nanosphere structure. Furthermore, the positive linear relationship of the structural defects and pyrrolic nitrogen species with the maximum power generation in SCMFC were clearly elucidated. This study demonstrated that the cost effective HNCNS-1000 was a promising alternative to commercial Pt/C catalyst for practical application in MFCs treating wastewater. Our result revealed the effectiveness of MFC fabricated with HNCNS-1000 cathode catalyst in terms of power generation and wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Nanosferas , Carbono , Eletrodos , Nitrogênio , Oxigênio , Dióxido de Silício , Águas Residuárias
6.
Environ Res ; 191: 110195, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919967

RESUMO

The sluggish oxygen reduction reaction (ORR) on the cathode severely limits the energy conversion efficiency of microbial fuel cells (MFCs). In this study, cobalt and nitrogen co-doped ordered mesoporous carbon (Cox-N-OMC) was prepared by heat-treating a mixture of cobalt nitrate, melamine and ordered mesoporous carbon (OMC). The addition of cobalt nitrate remarkably improved the ORR reactivity, compared to the nitrogen-doped OMC catalyst. By optimizing the dosage of cobalt nitrate (x = 0.6, 0.8 and 1.0 g), the Co0.8-N-OMC catalyst displayed excellent ORR catalytic performances in neutral media with the onset potential of 0.79 V (vs. RHE), half-wave potential of 0.59 V and limiting current density of 5.43 mA/cm2, which was comparable to the commercial Pt/C catalyst (0.86 V, 0.60 V and 4.76 mA/cm2). The high activity of Co0.8-N-OMC catalyst was attributed to the high active surface area, higher total nitrogen amount, and higher relative distribution of graphitic nitrogen and pyrrolic nitrogen species. Furthermore, single chamber microbial fuel cell (SCMFC) with Co0.8-N-OMC cathode exhibited the highest power density of 389 ± 24 mW/m2, chemical oxygen demand (COD) removal of 81.1 ± 2.2% and coulombic efficiency (CE) of 17.2 ± 2.5%. On the other hand, in the Co1.0-N-OMC catalyst, increasing the cobalt dosage from 0.8 to 1.0 g resulted in more oxidized-N species, and the reduced power generation in SCMFC (360 ± 8 mW/m2). The power generated by these catalysts and results of electrochemical evaluation were strongly correlated with the total nitrogen contents on the catalyst surface. This study demonstrated the feasibility of optimizing the dosage of metal to enhance wastewater treatment capacity.


Assuntos
Fontes de Energia Bioelétrica , Carbono , Cobalto , Eletrodos , Nitrogênio , Oxigênio , Águas Residuárias
7.
Environ Res ; 182: 109011, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837548

RESUMO

Microbial fuel cells (MFCs) is promising to combat environmental pollution by converting organic waste to electricity. One critical problem for practical application of MFCs treating wastewater is sluggish oxygen reduction reaction (ORR) on cathode. This study focused on developing novel metal-free cost-effective cathodic catalysts to enhance power generation of MFCs. Specifically, carbon powder (Vulcan XC-72R) was modified with acid treatment and pyrazinamide (as nitrogen precursor), and subsequently pyrolyzed at different temperatures. For CN-X (X = 700-1000 °C) materials, chemical compositions (the doping contents of nitrogen species, oxygen-containing groups, and sulfur-containing groups) were altered with pyrolysis temperature. Linear sweep voltammetry showed that CN-800 exhibited the highest ORR activity, with an onset potential of 0.215 V and a half-wave potential of -0.096 V (vs. Ag/AgCl). Electrochemical measurements clearly presented an enhancement of ORR activity by treating carbon powder with sulfuric acid and nitrogen doping, which was well correlated with voltage output in single chamber MFCs (SCMFCs). On the other hand, for the nitrogen-doped cathode catalysts, the best performance in SCMFCs was directly related with the amount of pyridinic nitrogen species and total nitrogen amount. The MFC operated with CN-800 exhibited a maximum power density of 371 ± 3 mW/m2 with the chemical oxygen demand (COD) removal of 77.2 ± 1.5% and coulombic efficiency (CE) of 8.6 ± 0.3%. Furthermore, the MFC with CN-800 exhibited an excellent stability over longer than 580 h of operation with 1.5% voltage reduction. CN-800 possessed comparable COD removal efficiency to conventional costly Pt/C, and exhibited distinct cost-effectiveness for MFC practical applications in wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Nitrogênio , Águas Residuárias , Carbono , Eletricidade , Eletrodos , Oxirredução , Oxigênio , Fuligem
8.
Chemistry ; 24(13): 3283-3288, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29282777

RESUMO

In recent years, various platinum-free catalysts for the oxygen reduction reaction (ORR) have attracted great attention due to the limited natural abundance and high cost of platinum. Herein, Ag@N-C (N-C: nitrogen-doped carbon) nanorods for the ORR were synthesized through chemical polymerization and pyrolysis methods by using pyrrole and silver nitrate as raw materials. Pyrolysis could significantly increase the specific surface area of as-synthesized catalysts and convert pyrrolic-N into graphitic-N and pyridinic-N. The results of electrochemical tests show that the Ag@N-C-900 catalyst (pyrolyzed at 900 °C) exhibits highly efficient ORR catalytic activity, improved stability, and better methanol resistance in comparison to that of Pt/C catalyst in alkaline media.

9.
Mikrochim Acta ; 185(9): 438, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30167785

RESUMO

Polyimide (PI) sheets were laser etched to obtain graphene-based carbon nanomaterials (LEGCNs). These were analyzed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy which confirmed the presence of stacked multilayer graphene nanosheets. Their large specific surface and large number of edge-plane active sites facilitate the accumulation of metal ions. A glassy carbon electrode (GCE) with an in-situ plated bismuth film was modified with the LEGCNs to give a sensor with satisfactory response for the simultaneous determination of cadmium(II) and lead(II) by means of square wave anodic stripping voltammetry. It appears that is the first report on an electrochemical sensor based on the use of laser etched graphene for determination of heavy metal ions. Figures of merit for detection of Cd(II) include (a) a low and well separated working potential of -0.80 V (vs. Ag/AgCl), (b) a wide linear range (from 7 to 120 µg·L-1), and a low detection limits 0.47 µg·L-1. The respective data for Pb(II) are (a) -0.55 V, (b) 5 to 120 µg·L-1, and (c) 0.41 µg·L-1. The modified GCE displays remarkable repeatability, reproducibility, selectivity and stability. The sensor was applied to the simultaneous determination of Cd(II) and Pb(II) in spiked real water samples. The results confirm that the laser etching technique is an efficient tool for the preparation of carbon nanomaterials with high quality and great sensing performance. Graphical abstract Bismuth film and laser etched graphene-modified glassy carbon electrode (BF-LEGCN/GCE) for the simultaneous determination of cadmium(II) and lead(II) by square wave anodic stripping voltammetry.

10.
Chemistry ; 23(32): 7710-7718, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28258967

RESUMO

The hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR) play important roles in many energy conversion and storage systems. To accelerate the reaction processes, there is a constant need for efficient new catalysts. In the present work, we have developed a facile pyrolysis-based process for the co-synthesis of palladium-cobalt nanoparticles supported on carbon nanotubes (Pd-CoCNTs), which exhibit superior catalytic activity for the HER and enhanced ORR performance. Non-agglomerated Pd nanoparticles of diameters 2-4 nm are uniformly distributed on the surface of CoCNTs, while the inner Co particles are an essential element in forming the framework of the CoCNTs. Compared to the Pd-free N-rich CoCNTs, Pd-CoCNTs have a more defective surface with a larger electrochemically active surface area (ECSA), and show enhanced ORR activity, outstanding methanol tolerance, and long-term stability in alkaline solution. At a low Pd loading of 0.0292 mg cm-2 , the Pd-CoCNTs require overpotentials of 0.024 V and 0.215 V to catalyze the HER and to drive a current density of 50 mA cm-2 in acidic solution, respectively. The palladium nanoparticles on the surface of the CoCNTs are considered to be highly active sites for HER, based on the results of control experiments, and it is easy to adjust the catalytic activity of the Pd-CoCNTs by changing the concentration of Pd therein. The proposed method provides a means of fabricating efficient bifunctional catalysts with controllable low contents of precious metals.

11.
Chemistry ; 22(15): 5425-9, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26918770

RESUMO

An electrochemical synthesis of benzazoles directly from alcohols and o-substituted anilines has been developed. The reaction conditions have been optimized by varying the composition of the electrolyte and the metal salt used as catalyst. The cyclization proceeds smoothly with a catalytic amount of a cobalt salt under air at room temperature to afford 2-substituted benzimidazoles, benzothiazoles, and benzoxazoles in good to excellent yields with a wide substrate scope.

12.
Analyst ; 140(11): 3746-52, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25631755

RESUMO

This study demonstrates a new electrochemical microbiosensor for selective in vivo monitoring of glucose in rat brains. The microbiosensor is prepared by using Prussian blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) as the electrocatalyst for the reduction and determination of H2O2 generated from the glucose oxidase (GOx)-based enzymatic catalytic reaction. PANI and MWNTs are used to stabilize PB nanoparticles in physiological solutions. As a result, the as-formed three-dimensional (3D) PB/PANI/MWNT nanostructure exhibits a stable and large electrochemical response compared to the PB-modified electrode. The use of PB/PANI/MWNTs in this work to replace "natural peroxidase" (i.e., horseradish peroxidase) used in the existing microbiosensors enables the method developed here to be facile but selective for in vivo measurements of glucose virtually interference-free from ascorbic acid and other electroactive species coexisting in the brain. This property, along with the good linearity and stability toward glucose, makes this microbiosensor competent for continuous in vivo monitoring of the changes of glucose in rat brains during intraperitoneal injection of insulin. The method demonstrated here can be applied to develop other oxidase-based microbiosensors for other neurochemicals, which would be helpful for understanding the chemical process involved in some physiological and pathological events.


Assuntos
Compostos de Anilina/química , Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Ferrocianetos/química , Glucose/metabolismo , Nanotubos de Carbono/química , Animais , Catálise , Estabilidade de Medicamentos , Eletroquímica , Peróxido de Hidrogênio/química , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley
13.
Biosens Bioelectron ; 248: 115941, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160634

RESUMO

Environmental pollution caused by tetracycline antibiotics is a major concern of global public health. Here, a novel and portable molecularly imprinted electrochemiluminescence (MIECL) sensor based on smartphones for highly sensitive detection of chlortetracycline (CTC) has been successfully established. The high-performance ECL emitter of biomass carbon (BC) encapsulated CdZnTeS (CdZnTeS@BC) was successfully synthesized by hydrothermal. The enhanced ECL performance was ascribed to the introduction of the BC and increased the overall electrical conductivity of the nanoemitter, as well as increased the number of sulfur vacancies and doping on the surface of the emitter based on density functional theory calculations. An aniline-CTC molecular imprinted polymer was synthesized on the surface of the CdZnTeS@BC modified electrode by in-situ electropolymerization. The decrease in MIECL signal was attributed to the increase in impedance effect. The MIECL nanoplatform enabled a wide linear relationship in the range of 0.05-100 µmol/L with a detection limit of 0.029 µmol/L for spectrometer sensors. Interestingly, the light emitted during the MIECL reaction can be captured by a smartphone. Thus, machine learning was used to screen the photos that were taken, and color analysis was carried out on the screened photos by self-developed software, thus achieving a portable, convenient, and intelligent sensing mode. Finally, the sensor obtains satisfactory results in the detection of actual samples, with no significant differences from those of liquid chromatography.


Assuntos
Técnicas Biossensoriais , Cádmio , Clortetraciclina , Impressão Molecular , Telúrio , Zinco , Carbono/química , Medições Luminescentes/métodos , Impressão Molecular/métodos , Inteligência Artificial , Biomassa , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
14.
Anal Chim Acta ; 1297: 342373, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438242

RESUMO

In this work, a colorimetric and fluorescent dual-mode probe controlled by NH2-MIL-88 B (Fe, Ni) nanozymes was developed to visually detect tetracycline antibiotics (TCs) residues quantitatively, as well as accurately distinguish the four most widely used tetracycline analogs (tetracycline (TC), chrycline (CTC), oxytetracycline (OTC), and doxycycline (DC)). Colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) may be oxidized to blue oxidized TMB by the Fe Fenton reaction, which was catalyzed by the NH2-MIL-88 B (Fe, Ni) nanozyme with POD-like activity. The colorimetric detection system allows TCs to interact with NH2-MIL-88 B (Fe, Ni). This inhibits the production of ·OH, weakens the oxidation process of TMB, and ultimately lightens the blue color in the system by blocking the electron transfer between NH2-MIL-88 B (Fe, Ni) and H2O2. Furthermore, TCs can interact with NH2-MIL-88 B (Fe, Ni) as a result of the internal filtering effect, which causes the fluorescence intensity to decrease as TCs concentration increases. Additionally, a portable instrument that combines a smartphone sensing platform with colorimetric and fluorescent signals was created for the quick, visual quantitative detection of TCs. The colorimetric and fluorescent dual-mode nano platform enables color change, with detection limits (LODs) of 0.182 µM and 0.0668 µM for the spectrometer and smartphone sensor, respectively, based on the inhibition of fluorescence and enzyme-like activities by TCs. Overall, the colorimetric and fluorescence dual-mode sensor has good stability, high specificity, and an efficient way to eliminate false-positive issues associated with a single detection mode.


Assuntos
Benzidinas , Aprendizado Profundo , Compostos Heterocíclicos , Colorimetria , Peróxido de Hidrogênio , Smartphone , Tetraciclina , Antibacterianos , Corantes Fluorescentes
15.
Food Chem ; 444: 138656, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325090

RESUMO

Environmental pollution caused by ciprofloxacin is a major problem of global public health. A machine learning-assisted portable smartphone-based visualized molecularly imprinted electrochemiluminescence (MIECL) sensor was developed for the highly selective and sensitive detection of ciprofloxacin (CFX) in food. To boost the efficiency of electrochemiluminescence (ECL), oxygen vacancies (OVs) enrichment was introduced into the flower-like Tb@Lu2O3 nanoemitter. With the specific recognition reaction between MIP as capture probes and CFX as detection target, the ECL signal significantly decreased. According to, CFX analysis was determined by traditional ECL analyzer detector in the concentration range from 5 × 10-4 to 5 × 102 µmol L-1 with the detection limit (LOD) of 0.095 nmol L-1 (S/N = 3). Analysis of luminescence images using fast electrochemiluminescence judgment network (FEJ-Net) models, achieving portable and intelligent quick analysis of CFX. The proposed MIECL sensor was used for CFX analysis in real meat samples and satisfactory results, as well as efficient selectivity and good stability.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Impressão Molecular/métodos , Medições Luminescentes/métodos , Fotometria , Luminescência , Limite de Detecção , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
16.
Anal Chem ; 85(15): 7599-605, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23834330

RESUMO

This study demonstrates a microfluidic chip-based online electrochemical detecting system for in vivo continuous and simultaneous monitoring of ascorbate and Mg(2+) in rat brain. In this system, a microfluidic chip is used as the detector for both species. To fabricate the detector, a single-channel microfluidic chip is developed into an electrochemical flow cell by incorporating the chip with an indium-tin oxide (ITO) electrode as working electrode, an Ag/AgCl wire as reference electrode, and a stainless steel tube as counter electrode. Selective detection of ascorbate and Mg(2+) is achieved by drop-coating single-walled carbon nanotubes (SWNTs) and polymerizing toluidine blue O (polyTBO) film onto the ITO electrode, respectively. Moreover, the alignment of SWNT-modified and polyTBO-modified electrodes and the solution introduction pattern are carefully designed to avoid any cross talk between two electrodes. With the microfluidic chip-based electrochemical flow cell as the detector, an online electrochemical detecting system is successfully established by directly integrating the microfluidic chip-based electrochemical flow cell with in vivo microdialysis. The microfluidic system exhibits sensing properties with a linear relationship from 5 to 100 µM for ascorbate and from 100 to 2000 µM for Mg(2+). Moreover, this system demonstrates a high selectivity and stability and good reproducibility for simultaneous measurements of ascorbate and Mg(2+) in a continuous-flow system. These excellent properties substantially render this system great potential for continuous and simultaneous online monitoring of ascorbate and Mg(2+) in rat brain.


Assuntos
Ácido Ascórbico/metabolismo , Encéfalo/metabolismo , Eletroquímica/métodos , Magnésio/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Animais , Condutividade Elétrica , Masculino , Sistemas On-Line , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
17.
J Org Chem ; 78(15): 7482-7, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23808633

RESUMO

An efficient and selective electrosynthesis of phenols and anilines from arylboronic acids in aqueous ammonia is achieved in an undivided cell. By simply changing the concentration of aqueous ammonia and the anode potential, good yields of phenols and anilines can be obtained chemoselectively with high reaction rates. We propose that anodic oxidation could have played an important role in these transformations.


Assuntos
Compostos de Anilina/síntese química , Ácidos Borônicos/química , Cobre/química , Técnicas Eletroquímicas , Fenóis/síntese química , Aminação , Compostos de Anilina/química , Hidroxilação , Estrutura Molecular , Fenóis/química
18.
Food Chem ; 429: 136920, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487397

RESUMO

We designed a novel, portable, and visual dual-potential molecularly imprinted ratiometric electrochemiluminescence (MIRECL) sensor for tyramine (TYM) detection based on smartphone and deep learning-assisted optical devices. Molecularly imprinted polymer-Ce2Sn2O7 (MIP-Ce2Sn2O7) layers were fabricated by in-situ electropolymerization method as the capture and signal amplification probe. Oxygen vacancies in Ce2Sn2O7 not only enhance the electrochemical redox capability but also accelerate the energy transfer, thereby enhancing the luminescence of cathode ECL. Under optimal conditions, the ECL signals of MIP-Ce2Sn2O7 at the cathode and the anode response of Ru(bpy)32+ was reduced, thus a wide linear range from 0.01 µM to 1000 µM with the detection limit as low as 0.005 µM. Interestingly, combined with an artificial intelligence image recognition algorithm and the principle of optical signal reading by smartphone, the developed MIRECL sensor has been applied to the portable and visual determination of TYM in aquatic samples, and its practicability has been satisfactorily verified.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Medições Luminescentes/métodos , Smartphone , Inteligência Artificial , Impedância Elétrica , Aprendizado de Máquina , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos
19.
Biosens Bioelectron ; 222: 114996, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521203

RESUMO

Here, a novel and portable machine learning-assisted smartphone-based visual molecularly imprinted ratiometric electrochemiluminescence (MIRECL) sensing platform was constructed for highly selective sensitive detection of 2,4-Dichlorophenoxyacetic acid (2,4-D) for the first time. Te doped CdS-coated Mn3O4 (Te-CdS@Mn3O4) with catalase-like activity served as cathode-emitter, while luminol as anode luminophore accompanied H2O2 as co-reactant, and Te-CdS@Mn3O4 decorated molecularly imprinted polymers (MIPs) as recognition unit, respectively. Molecular models were constructed and MIP band and binding energies were calculated to elucidate the luminescence mechanism and select the best functional monomers. The peroxidase activity and the large specific surface area of Mn3O4 and the electrochemical effect can significantly improve the ECL intensity and analytical sensitivity of Te-CdS@Mn3O4. 2,4-D-MIPs were fabricated by in-situ electrochemical polymerization, and the rebinding of 2,4-D inhibits the binding of H2O2 to the anode emitter, and with the increase of the cathode impedance, the ECL response of Te-CdS@Mn3O4 decreases significantly. However, the blocked reaction of luminol on the anode surface also reduces the ECL response. Thus, a double-reduced MIRECL sensing system was designed and exhibited remarkable performance in sensitivity and selectivity due to the specific recognition of MIPs and the inherent ratio correction effect. Wider linear range in the range of 1 nM-100 µM with a detection limit of 0.63 nM for 2,4-D detection. Interestingly, a portable and visual smartphone-based MIRECL analysis system was established based on the capture of luminescence images by smartphones, classification and recognition by convolutional neural networks, and color analysis by self-developed software. Therefore, the developed MIRECL sensor is suitable for integration with portable devices for intelligent, convenient, and fast detection of 2,4-D in real samples.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Impressão Molecular/métodos , Smartphone , Luminol/química , Peróxido de Hidrogênio , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção , Polímeros Molecularmente Impressos , Ácido 2,4-Diclorofenoxiacético , Técnicas Eletroquímicas/métodos
20.
Artigo em Inglês | MEDLINE | ID: mdl-36750421

RESUMO

An optical monitoring device combining a smartphone with a polychromatic ratiometric fluorescence-colorimetric paper sensor was developed to detect Hg2+ and S2- in water and seafood. This monitoring included the detection of food deterioration and was made possible by processing the sensing data with a machine learning algorithm. The polychromatic fluorescence sensor was composed of blue fluorescent carbon quantum dots (CDs) (BU-CDs) and green and red fluorescent CdZnTe quantum dots (QDs) (named GN-QDs and RD-QDs, respectively). The experimental results and density functional theory (DFT) prove that the incorporation of Zn can improve the stability and quantum yield of CdZnTe QDs. According to the dynamic and static quenching mechanisms, GN-QDs and RD-QDs were quenched by Hg2+ and sulfide, respectively, but BU-CDs were not sensitive to them. The system colors change from green to red to blue as the concentration of the two detectors rises, and the limits of detection (LOD) were 0.002 and 1.488 µM, respectively. Meanwhile, the probe was combined with the hydrogel to construct a visual sensing intelligent test strip, which realized the monitoring of food freshness. In addition, a smartphone device assisted by multiple machine learning methods was used to text Hg2+ and sulfide in real samples. It can be concluded that the fabulous stability, sensitivity, and practicality exhibited by this sensing mechanism give it unlimited potential for assessing the contents of toxic and hazardous substances Hg2+ and sulfide.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa