Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(3): 661-674, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527341

RESUMO

Scientific understanding of biotic effects on the water trophic level is lacking for urban lakes during algal bloom development stage. Based on the Illumina MiSeq sequencing, quantitative polymerase chain reaction (PCR), and multiple statistical analyses, we estimated distribution patterns and ecological roles of planktonic bacteria and eukaryotes in urban lakes during algal bloom development stage (i.e., April, May, and June). Cyanobacteria and Chlorophyta mainly dominated algal blooms. Bacteria exhibited significantly higher absolute abundance and community diversity than eukaryotes, whereas abundance and diversity of eukaryotic rather than bacterial community relate closely to the water trophic level. Multinutrient cycling (MNC) index was significantly correlated with eukaryotic diversity rather than bacterial diversity. Stronger species replacement, broader environmental breadth, and stronger phylogenetic signal were found for eukaryotic community than for bacterial community. In contrast, bacterial community displayed stronger community stability and environmental constraint than eukaryotic community. Stochastic and differentiating processes contributed more to community assemblies of bacteria and eukaryotes. Our results emphasized that a strong linkage between planktonic diversity and MNC ensured a close relationship between planktonic diversity and the water trophic level of urban lakes. Our findings could be useful to guide the formulation and implementation of environmental lake protection measures.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Eucariotos , Filogenia , Plâncton , Água
2.
Mol Ecol ; 30(10): 2390-2403, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714213

RESUMO

Disentangling the biogeographic patterns of rare and abundant microbes is essential in order to understand the generation and maintenance of microbial diversity with respect to the functions they provide. However, little is known about ecological assembly processes and environmental adaptation of rare and abundant microbes across large spatial-scale wetlands. Using Illumina sequencing and multiple statistical analyses, we characterized the taxonomic and phylogenetic diversity of rare and abundant bacteria and fungi in Qinghai-Tibet Plateau wetland soils. Abundant microbial taxa exhibited broader environmental thresholds and stronger phylogenetic signals for ecological traits than rare ones. By contrast, rare taxa showed higher sensitivity to environmental changes and closer phylogenetic clustering than abundant ones. The null model analysis revealed that dispersal limitation belonging to stochastic process dominated community assemblies of abundant bacteria, and rare and abundant fungi, while variable selection belonging to deterministic process governed community assembly of rare bacteria. Neutral model analysis and variation partitioning analysis further confirmed that abundant microbes were less environmentally constrained. Soil ammonia nitrogen was the crucial factor in mediating the balance between stochasticity and determinism of both rare and abundant microbes. Abundant microbes may have better environmental adaptation potential and are less dispersed by environmental changes than rare ones. Our findings extend knowledge of the adaptation of rare and abundant microbes to ongoing environmental change and could facilitate prediction of biodiversity loss caused probably by climate change and human activity in the Qinghai-Tibet Plateau wetlands.


Assuntos
Solo , Áreas Alagadas , Humanos , Filogenia , Microbiologia do Solo , Tibet
3.
Sci Total Environ ; 860: 160190, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36402317

RESUMO

Decomposition rates of litter mixtures reflect the combined effects of litter species diversity, litter quality, decomposers, their interactions with each other and with the environment. The outcomes of those interactions remain ambiguous and past studies have reported conflicting results (e.g., litter mixture richness effects). To date, how litter diversity and soil fauna interactions shape litter mixture decomposition remains poorly understood. Through a sixteen month long common garden litter decomposition experiment, we tested these interaction effects using litterbags of three mesh sizes (micromesh, mesomesh, and macromesh) to disentangle the contributions of different fauna groups categorized by their size at Wuhan botanical garden (subtropical climate). We examined the decomposition of five single commonly available species litters and their full 26 mixtures combination spanning from 2 to 5 species. In total, 2325 litterbags were incubated at the setup of the experiment and partly harvested after 1, 3, 6, 9, and 16 months after exposure to evaluate the mass loss and the combined effects of soil fauna and litter diversity. We predicted that litter mixture effects should increase with increased litter quality dissimilarity, and soil fauna should enhance litter (both single species litter and litter mixtures) decomposition rate. Litter mass loss ranged from 26.9 % to 87.3 %. Soil fauna access to litterbags accelerated mass loss by 29.8 % on average. The contribution of soil mesofauna did not differ from that of soil meso- and macrofauna. Incubation duration and its interactions with litter quality dissimilarities together with soil fauna determined the litter mixture effect. Furthermore, the litter mixture effect weakened as the decomposition progresses. Faunal contribution was broadly additive to the positive mixture effect irrespective of litter species richness or litter dissimilarity. This implies that combining the dissimilarity of mixture species and contributions of different soil fauna provides a more comprehensive understanding of mixed litter decomposition.


Assuntos
Ecossistema , Folhas de Planta , Solo , Jardinagem , Cidades
4.
Sci Total Environ ; 796: 148943, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34265611

RESUMO

Environmental factor-driven bacterial diversity could be an indicator for evaluating ecosystem multifunctionality (EMF). However, little is known about interconnections between EMF and the community diversity of rare and abundant phoD-harboring bacteria responsible for organic phosphorus mineralization. Illumina MiSeq sequencing and multiple statistical analyses were used to evaluate diversity maintenance of rare and abundant phoD-harboring bacteria at both taxonomic and phylogenetic levels and their contributions to soil EMF in the subtropical Shennongjia primeval forest. We found that rare phoD-harboring bacteria exhibited higher community diversity and broader environmental breadths than abundant ones, while abundant phoD-harboring bacteria showed closer phylogenetic clustering and stronger phylogenetic signals of ecological preferences than rare ones. Stochastic processes dominated community assemblies of rare and abundant phoD-harboring bacteria, and temperature was an important environmental variable adjusting the balance between stochastic and deterministic processes. The taxonomic α-diversity of rare phoD-harboring bacteria showed larger contribution to soil EMF than that of abundant ones, while the phylogenetic α-diversity of abundant phoD-harboring bacteria contributed significantly more than that of rare ones. Our findings enrich knowledge of the environmental adaptation of rare and abundant phoD-harboring bacteria, and highlight linkages between soil EMF and the diversity of rare and abundant phoD-harboring bacteria at both the taxonomic and phylogenetic levels.


Assuntos
Ecossistema , Microbiologia do Solo , Bactérias/genética , Biodiversidade , Florestas , Filogenia , Solo
5.
Water Res ; 202: 117449, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34332188

RESUMO

Disentangling ecological mechanisms behind dredging is meaningful to implement environmental policy for improving water quality. However, environmental adaptation and community assembly processes of bacterioplankton in response to dredging disturbance are poorly understood. Based on Illumine MiSeq sequencing and multiple statistical analyses, we estimated interactions, functions, environmental breadths, phylogenetic signals, phylogenetic clustering, and ecological assembly processes of bacterioplankton community before and after dredging. We found distinct change in community composition, comparable decreases in diversity, functional redundancy and conflicting interaction, relatively low phylogenetic clustering, and relatively weak environmental adaptation after dredging. The bacterioplankton community assembly was affected by both stochastic and deterministic processes before dredging, but dominated by stochasticity after dredging. Sediment total phosphorus was a decisive factor in balancing determinism and stochasticity for bacterioplankton community assembly before and after dredging. Consequently, taxonomic and phylogenetic α-diversities of bacterioplankton exhibited higher contributions to the water trophic level represented by chlorophyl α before dredging than afterwards. Our results emphasized bacterioplankton in response to environmental changes caused by dredging, with nutrient loss and ecological drift playing important roles. These findings extend knowledge of contribution of bacterioplankton diversity to water trophic level and decipher mechanisms of bacterioplankton diversity maintenance in response to dredging, which is useful for guiding mitigation of cyanobacterial blooms.


Assuntos
Cianobactérias , Organismos Aquáticos , Cianobactérias/genética , Fósforo , Filogenia
6.
Sci Total Environ ; 648: 388-397, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30121038

RESUMO

Soil microbial metabolism is vital for nutrient cycling and aboveground ecosystem stability. A general understanding of microbial metabolism and nutrient limitation under human disturbance in arid and semi-arid regions, which are the largest and most fragile oligotrophic ecosystems globally, however, is still limited. We quantified and compared the characteristics of nutrient limitation of soil microbes under natural/artificial grassland and shrubland, an ecological forest, an economic forest, and sloped cropland in typical arid and semi-arid ecosystems on the Loess Plateau, China. Vegetation restoration significantly affected the activities of extracellular enzymes and ecoenzymatic stoichiometry mainly by affecting soil nutrients and nutrient stoichiometry. A vector analysis of enzyme activity indicated that microbial communities were co-limited by carbon (C) and phosphorus (P) in all types of vegetation restoration. Linear regression indicated that microbial C and P limitations were significantly correlated with the stoichiometry of soil nutrient, suggesting that the balance of nutrient stoichiometry is an important factor maintaining microbial metabolism and elemental homeostasis. C and P limitations in the microbial communities were the lowest in the natural grassland. This implies that both vegetation and microbial communities under the restoration pattern of natural grassland were more stable under environmental stress, so the restoration of natural grassland should be recommended as the preferred option for ecosystem restoration in these arid and semi-arid regions.


Assuntos
Ciclo do Carbono , Recuperação e Remediação Ambiental , Pradaria , Ciclo do Nitrogênio , Fósforo/metabolismo , Microbiologia do Solo , Biodiversidade , China , Clima Desértico , Plantas
7.
Environ Sci Process Impacts ; 18(2): 265-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26766513

RESUMO

A GIS approach and HJ-1B images were employed to determine the effect of landscape structure on aerosol optical depth (AOD) patterns. Landscape metrics, fractal analysis and contribution analysis were proposed to quantitatively illustrate the impact of land use on AOD patterns. The high correlation between the mean AOD and landscape metrics indicates that both the landscape composition and spatial structure affect the AOD pattern. Additionally, the fractal analysis demonstrated that the densities of built-up areas and bare land decreased from the high AOD centers to the outer boundary, but those of water and forest increased. These results reveal that the built-up area is the main positive contributor to air pollution, followed by bare land. Although bare land had a high AOD, it made a limited contribution to regional air pollution due to its small spatial extent. The contribution analysis further elucidated that built-up areas and bare land can increase air pollution more strongly in spring than in autumn, whereas forest and water have a completely opposite effect. Based on fractal and contribution analyses, the different effects of cropland are ascribed to the greater vegetation coverage from farming activity in spring than in autumn. The opposite effect of cropland on air pollution reveals that green coverage and human activity also influence AOD patterns. Given that serious concerns have been raised regarding the effects of built-up areas, bare land and agricultural air pollutant emissions, this study will add fundamental knowledge of the understanding of the key factors influencing urban air quality.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , China , Sistemas de Informação Geográfica , Modelos Teóricos , Fotografação , Estações do Ano
8.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 21(3): 189-90, 2003 Jun.
Artigo em Zh | MEDLINE | ID: mdl-12898758

RESUMO

OBJECTIVE: The aim of this study was to investigate the effect of short enamel etching time on bonding strength. METHODS: 80 healthy premolars were randomly divided into two equal groups, one was etched for 15 seconds, the other for 60 seconds, after normally bonding Edgewise brackets, the tooth specimen was stored in water at room temperature for 24 hours. An MTS NEW810 100KN testing machine was used to examine the shear force. RESULTS: Although the bonding strength for 15 seconds etching time was weaker than that for 60 seconds, the means of the bonding strength in 15 seconds group reached 5.8625 MPa. CONCLUSION: Etching for 15 seconds could provide enough bond strength for orthodontic practice. Furthermore, the adhesive remained on tooth after debonding was less by comparison with 60 seconds etching group, therefore brackets could be removed easily and the work efficiency could be increased in clinic by means of 15 seconds etching time.


Assuntos
Condicionamento Ácido do Dente/métodos , Colagem Dentária , Descolagem Dentária , Esmalte Dentário/lesões , Esmalte Dentário/ultraestrutura , Humanos , Braquetes Ortodônticos , Ortodontia Corretiva , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa