Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 17(9): 3425-3434, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787285

RESUMO

Brain microvascular endothelial cells derived from induced pluripotent stem cells (dhBMECs) are a scalable and reproducible resource for studies of the human blood-brain barrier, including mechanisms and strategies for drug delivery. Confluent monolayers of dhBMECs recapitulate key in vivo functions including tight junctions to limit paracellular permeability and efflux and nutrient transport to regulate transcellular permeability. Techniques for cryopreservation of dhBMECs have been reported; however, functional validation studies after long-term cryopreservation have not been extensively performed. Here, we characterize dhBMECs after 1 year of cryopreservation using selective purification on extracellular matrix-treated surfaces and ROCK inhibition. One-year cryopreserved dhBMECs maintain functionality of tight junctions, efflux pumps, and nutrient transporters with stable protein localization and gene expression. Cryopreservation is associated with a decrease in the yield of adherent cells and unique responses to cell stress, resulting in altered paracellular permeability of Lucifer yellow. Additionally, cryopreserved dhBMECs reliably form functional three-dimensional microvessels independent of cryopreservation length, with permeabilities lower than non-cryopreserved two-dimensional models. Long-term cryopreservation of dhBMECs offers key advantages including increased scalability, reduced batch-to-batch effects, the ability to conduct well-controlled follow up studies, and support of multisite collaboration from the same cell stock, all while maintaining phenotype for screening pharmaceutical agents.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Células Endoteliais/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Microvasos/fisiologia , Transporte Biológico/fisiologia , Permeabilidade Capilar/fisiologia , Células Cultivadas , Criopreservação/métodos , Matriz Extracelular/fisiologia , Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Junções Íntimas/fisiologia
2.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645134

RESUMO

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.

3.
bioRxiv ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39282356

RESUMO

We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4× mean depth) and deep whole exome (30-40× mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations. We evaluated the accuracy of BGE imputed genotypes against raw genotype calls from the Illumina Global Screening Array. All PUMAS cohorts had R 2 concordance ≥95% among SNPs with MAF≥1%, and never fell below ≥90% R 2 for SNPs with MAF<1%. Furthermore, concordance rates among local ancestries within two recently admixed cohorts were consistent among SNPs with MAF≥1%, with only minor deviations in SNPs with MAF<1%. We also benchmarked the discovery capacity of BGE to access protein-coding copy number variants (CNVs) against deep whole genome data, finding that deletions and duplications spanning at least 3 exons had a positive predicted value of ~90%. Our results demonstrate BGE scalability and efficacy in capturing SNPs, indels, and CNVs in the human genome at 28% of the cost of deep whole-genome sequencing. BGE is poised to enhance access to genomic testing and empower genomic discoveries, particularly in underrepresented populations.

4.
Fluids Barriers CNS ; 19(1): 33, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551622

RESUMO

Oxidative stress is a shared pathology of neurodegenerative disease and brain injuries, and is derived from perturbations to normal cell processes by aging or environmental factors such as UV exposure and air pollution. As oxidative cues are often present in systemic circulation, the blood-brain barrier (BBB) plays a key role in mediating the effect of these cues on brain dysfunction. Therefore, oxidative damage and disruption of the BBB is an emergent focus of neurodegenerative disease etiology and progression. We assessed barrier dysfunction in response to chronic and acute oxidative stress in 2D and 3D in vitro models of the BBB with human iPSC-derived brain microvascular endothelial-like cells (iBMECs). We first established doses of hydrogen peroxide to induce chronic damage (modeling aging and neurodegenerative disease) and acute damage (modeling the response to traumatic brain injury) by assessing barrier function via transendothelial electrical resistance in 2D iBMEC monolayers and permeability and monolayer integrity in 3D tissue-engineered iBMEC microvessels. Following application of these chronic and acute doses in our in vitro models, we found local, discrete structural changes were the most prevalent responses (rather than global barrier loss). Additionally, we validated unique functional changes in response to oxidative stress, including dysfunctional cell turnover dynamics and immune cell adhesion that were consistent with changes in gene expression.


Assuntos
Barreira Hematoencefálica , Doenças Neurodegenerativas , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Humanos , Microvasos/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo
5.
Fluids Barriers CNS ; 19(1): 87, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333694

RESUMO

The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Barreira Hematoencefálica/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Endoteliais/metabolismo , Junções Íntimas , Diferenciação Celular/fisiologia , Microvasos/metabolismo , Encéfalo/irrigação sanguínea , Expressão Gênica , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa