Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7992): 630-638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093012

RESUMO

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Assuntos
Vacinas contra COVID-19 , Imunidade nas Mucosas , Animais , Cricetinae , Humanos , Camundongos , Administração por Inalação , Aerossóis , Anticorpos Antivirais/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos Virais/imunologia , Toxina da Cólera , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Nanopartículas , Pós , Primatas/virologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinação , Cápsulas
2.
Plant Cell ; 35(5): 1386-1407, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36748203

RESUMO

Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Folhas de Planta/metabolismo , Meristema/genética , Meristema/metabolismo , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255822

RESUMO

Sepsis ranks among the most common health problems worldwide, characterized by organ dysfunction resulting from infection. Excessive inflammatory responses, cytokine storms, and immune-induced microthrombosis are pivotal factors influencing the progression of sepsis. Our objective was to identify novel immune-related hub genes for sepsis through bioinformatic analysis, subsequently validating their specificity and potential as diagnostic and prognostic biomarkers in an animal experiment involving a sepsis mice model. Gene expression profiles of healthy controls and patients with sepsis were obtained from the Gene Expression Omnibus (GEO) and analysis of differentially expressed genes (DEGs) was conducted. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to analyze genes within crucial modules. The functional annotated DEGs which related to the immune signal pathways were used for constructing protein-protein interaction (PPI) analysis. Following this, two hub genes, FERMT3 and CD3G, were identified through correlation analyses associated with sequential organ failure assessment (SOFA) scores. These two hub genes were associated with cell adhesion, migration, thrombosis, and T-cell activation. Furthermore, immune infiltration analysis was conducted to investigate the inflammation microenvironment influenced by the hub genes. The efficacy and specificity of the two hub genes were validated through a mice sepsis model study. Concurrently, we observed a significant negative correlation between the expression of CD3G and IL-1ß and GRO/KC. These findings suggest that these two genes probably play important roles in the pathogenesis and progression of sepsis, presenting the potential to serve as more stable biomarkers for sepsis diagnosis and prognosis, deserving further study.


Assuntos
Experimentação Animal , Sepse , Animais , Humanos , Camundongos , Biomarcadores , Adesão Celular , Biologia Computacional , Modelos Animais de Doenças , Sepse/genética
4.
J Environ Manage ; 342: 118145, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210817

RESUMO

Monitoring long-term variations in fine particulate matter (PM2.5) is essential for environmental management and epidemiological studies. While satellite-based statistical/machine-learning methods can be used for estimating high-resolution ground-level PM2.5 concentration data, their applications have been hindered by limited accuracy in daily estimates during years without PM2.5 measurements and massive missing values due to satellite retrieval data. To address these issues, we developed a new spatiotemporal high-resolution PM2.5 hindcast modeling framework to generate the full-coverage, daily, 1-km PM2.5 data for China for the period 2000-2020 with improved accuracy. Our modeling framework incorporated information on changes in observation variables between periods with and without monitoring data and filled gaps in PM2.5 estimates induced by satellite data using imputed high-resolution aerosol data. Compared to previous hindcast studies, our method achieved superior overall cross-validation (CV) R2 and root-mean-square error (RMSE) of 0.90 and 12.94 µg/m3 and significantly improved the model performance in years without PM2.5 measurements, raising the leave-one-year-out CV R2 [RMSE] to 0.83 [12.10 µg/m3] at a monthly scale (0.65 [23.29 µg/m3] at a daily scale). Our long-term PM2.5 estimates show a sharp decline in PM2.5 exposure in recent years, but the national exposure level in 2020 still exceeded the first annual interim target of the 2021 World Health Organization air quality guidelines. The proposed hindcast framework represents a new strategy to improve air quality hindcast modeling and can be applied to other regions with limited air quality monitoring periods. These high-quality estimates can support both long- and short-term scientific research and environmental management of PM2.5 in China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Poluição do Ar/análise , China , Aerossóis/análise
5.
Cent Eur J Immunol ; 48(2): 81-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692024

RESUMO

Introduction: The unilateral ureteral obstruction (UUO) model is the most extensively used model to investigate chronic renal fibrosis. Macrophages play a critical role in the UUO model. We aimed to analyze the phenotype of macrophages from different sources activated in vitro and explore the role of M1 macrophages from various sources in UUO. Material and methods: C57BL/6 mice were randomly allocated to five different groups (n = 5 per group): the sham-operated control group, PBS-treated (UUO + PBS) group, bone marrow-derived M1 macrophage-treated (UUO + BM1) group, peritoneal M1 macrophage-treated (UUO + PM1) group, and splenic M1 macrophage-treated (UUO + SPM1) group. After M1 macrophages were injected into the tail vein of UUO-treated mice, renal fibrosis indexes were determined using HE, Masson staining, and α-SMA. Results: Compared to those in the UUO + PBS group, the pathological changes were much more severe in the UUO + BM1, UUO + PM1, and UUO + SPM1 groups. Compared to that in the UUO + PBS group, UUO + BM1 group, and UUO + SPM1 group, the collagen area in the UUO + PM1 group was higher at post-UUO day 5 (p < 0.01). The expression of α-SMA in the UUO + PM1 group was higher than that in the UUO + PBS group, UUO + BM1 group, and UUO + SPM1group (p < 0.001). Conclusions: The M1 macrophages cultured in vitro were reinjected into mice and aggravated kidney injury and fibrosis. Compared with BM1 and SPM1, PM1 demonstrated a stronger effect on inducing renal injury and fibrosis.

6.
Ecotoxicol Environ Saf ; 242: 113916, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878498

RESUMO

The protective ozone layer is continually depleting owing to an increase in the levels of solar UV-B radiation, which has harmful effects on organisms. Algae in desert soil can resist UV-B radiation, but most research on the radiation resistance of desert algae has focused on cyanobacteria. In this study, we found that desert green algae, Chlorella sp., could maintain high photosynthetic activity under UV-B stress. To examine the tolerance mechanism of the desert green algae photosystem, we observed the physiological and transcriptome-level responses of Chlorella sp. to high doses of UV-B radiation. The results showed that the reactive oxygen species (ROS) content first increased and then decreased, while the malondialdehyde (MDA) content revealed no notable lipid peroxidation during the UV-B exposure period. These results suggested that Chlorella sp. may have strong system characteristics for scavenging ROS. The antioxidant enzyme system showed efficient alternate coordination, which exhibited a protective effect against enhanced UV-B radiation. DNA damage and the chlorophyll and soluble protein contents had no significant changes in the early irradiation stage; UV-B radiation did not induce extracellular polysaccharides (EPS) synthesis. Transcriptomic data revealed that a strong photosynthetic system, efficient DNA repair, and changes in the expression of genes encoding ribosomal protein (which aid in protein synthesis and improve resistance) are responsible for the high UV-B tolerance characteristics of Chlorella sp. In contrast, EPS synthesis was not the main pathway for UV-B resistance. Our results revealed the potential cell damage repair mechanisms within Chlorella sp. that were associated with high intensity UV-B stress, thereby providing insights into the underlying regulatory adaptations of desert green algae.


Assuntos
Chlorella , Chlorella/genética , Chlorella/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos da radiação , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
7.
Pestic Biochem Physiol ; 184: 105109, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715048

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an important target for herbicide design. A multilayered virtual screening workflow was constructed by combining two pharmacophore models based on ligand and crystal complexes, molecular docking, molecular dynamics (MD), and biological activity determination to identify novel small-molecule inhibitors of HPPD. About 110, 000 compounds of Bailingwei and traditional Chinese medicine databases were screened. Of these, 333 were analyzed through docking experiments. Five compounds were selected by analyzing the binding pattern of inhibitors with amino acid residues in the active pocket. All five compounds could produce stable coordination with cobalt ion, and form favorable π-π interactions. MD simulation demonstrated that Phe381 and Phe424 made large contributions to the strength of binding. The enzyme activity experiment verified that compound-139 displayed excellent potency against AtHPPD (IC50 = 0.742 µM), however, compound-5222 had inhibitory effect on human HPPD (IC50 = 6 nM). Compound-139 exhibited herbicidal activity to some extent on different gramineous weeds. This work provided a strong insight into the design and development of novel HPPD inhibitor using in silico techniques.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Plantas Daninhas , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887168

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a pivotal enzyme in tocopherol and plastoquinone synthesis and a potential target for novel herbicides. Thirty-five pyridine derivatives were selected to establish a Topomer comparative molecular field analysis (Topomer CoMFA) model to obtain correlation information between HPPD inhibitory activity and the molecular structure. A credible and predictive Topomer CoMFA model was established by "split in two R-groups" cutting methods and fragment combinations (q2 = 0.703, r2 = 0.957, ONC = 6). The established model was used to screen out more active compounds and was optimized through the auto in silico ligand directing evolution (AILDE) platform to obtain potential HPPD inhibitors. Twenty-two new compounds with theoretically good HPPD inhibition were obtained by combining the high-activity contribution substituents in the existing molecules with the R-group search via Topomer search. Molecular docking results revealed that most of the 22 fresh compounds could form stable π-π interactions. The absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction and drug-like properties made 9 compounds potential HPPD inhibitors. Molecular dynamics simulation indicated that Compounds Y12 and Y14 showed good root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values and stability. According to the AILDE online verification, 5 new compounds with potential HPPD inhibition were discovered as HPPD inhibitor candidates. This study provides beneficial insights for subsequent HPPD inhibitor design.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Computadores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Hidrolases/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular
9.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458768

RESUMO

Uncontrolled hemorrhage from trauma or surgery can lead to death. In this study, chitosan/kaolin (CSK) and chitosan/montmorillonite (CSMMT) composites were prepared from chitosan (CS), kaolin (K), and montmorillonite (MMT) as raw materials to control bleeding. The physiochemical properties and surface morphology of CSK and CSMMT composites were analyzed by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta potentials, and X-ray fluorescence (XRF). The hemostatic mechanism was measured in vitro by activated partial thromboplastin time (APTT), prothrombin time (PT), in vitro clotting time, erythrocyte aggregation, and thromboelastogram (TEG). The hemostasis ability was further verified by using tail amputation and arteriovenous injury models in rats. The biocompatibility of CSK and CSMMT was evaluated by in vitro hemolysis, cytotoxicity assays, as well as acute toxicity test and skin irritation tests. The results show that CSK and CSMMT are promising composite materials with excellent biocompatibility and hemostatic properties that can effectively control bleeding.


Assuntos
Quitosana , Hemostáticos , Animais , Bentonita/química , Bentonita/farmacologia , Quitosana/química , Quitosana/farmacologia , Argila , Hemorragia/tratamento farmacológico , Hemostáticos/química , Hemostáticos/farmacologia , Caulim/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Angew Chem Int Ed Engl ; 61(12): e202115219, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-34994045

RESUMO

Herein, a novel dual single-atom catalyst comprising adjacent Fe-N4 and Mn-N4 sites on 2D ultrathin N-doped carbon nanosheets with porous structure (FeMn-DSAC) was constructed as the cathode for a flexible low-temperature Zn-air battery (ZAB). FeMn-DSAC exhibits remarkable bifunctional activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Control experiments and density functional theory calculations reveal that the catalytic activity arises from the cooperative effect of the Fe/Mn dual-sites aiding *OOH dissociation as well as the porous 2D nanosheet structure promoting active sits exposure and mass transfer during the reaction process. The excellent bifunctional activity of FeMn-DSAC enables the ZAB to operate efficiently at ultra-low temperature of -40 °C, delivering 30 mW cm-2 peak power density and retaining up to 86 % specific capacity from the room temperature counterpart.

11.
Small ; 17(5): e2005918, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33432674

RESUMO

Excitons, bound pairs of electrons and holes, could act as an intermediary between electronic signal processing and optical transmission, thus speeding up the interconnection of photoelectric communication. However, up to date, exciton-based logic devices such as switches that work at room temperature are still lacking. This work presents a prototype of a room-temperature optoelectronic switch based on excitons in WSe2 monolayer. The emission intensity of WSe2 stacked on Au and SiO2 substrates exhibits completely opposite behaviors upon applying gate voltages. Such observation can be ascribed to different doping behaviors of WSe2 caused by charge-transfer and chemical-doping effect at WSe2 /Au and WSe2 /SiO2 interfaces, respectively, together with the charge-drift effect. These interesting features can be utilized for optoelectronic switching, confirmed by the cyclic PL switching test for a long time exceeding 4000 s. This study offers a universal and reliable approach for the fabrication of exciton-based optoelectronic switches, which would be essential in integrated nanophotonics.

12.
Environ Sci Technol ; 55(15): 10192-10209, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34263594

RESUMO

Organophosphate esters (OPEs) have been a focus in the field of environmental science due to their large volume production, wide range of applications, ubiquitous occurrence, potential bioaccumulation, and worrisome ecological and health risks. Varied physicochemical properties among OPE analogues represent an outstanding scientific challenge in studying the environmental fate of OPEs in recent years. There is an increasing number of studies focusing on the long-range transport, trophic transfer, and ecological risks of OPEs. Therefore, it is necessary to conclude the OPE pollution status on a global scale, especially in the remote areas with vulnerable and fragile ecosystems. The present review links together the source, fate, and environmental behavior of OPEs in remote areas, integrates the occurrence and profile data, summarizes their bioaccumulation, trophic transfer, and ecological risks, and finally points out the predominant pollution burden of OPEs among organic pollutants in remote areas. Given the relatively high contamination level and bioaccumulation/biomagnification behavior of OPEs, in combination with the sensitivity of endemic species in remote areas, more attention should be paid to the potential ecological risks of OPEs.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , China , Ecossistema , Ésteres , Retardadores de Chama/análise , Organofosfatos
13.
Appl Opt ; 60(13): 3772-3778, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983310

RESUMO

Melanoma is a common, highly fatal skin cancer. Photoacoustic imaging can achieve highly sensitive and high-contrast detection of melanin molecules in tissues, also inheriting the high penetration depth and high spatial resolution characteristics of ultrasound imaging, thus it is a very promising non-invasive diagnostic tool for early melanoma. In this work, we built an acoustic-resolution-based photoacoustic microscopy system, using 1064 nm/532 nm pulsed light to observe melanoma in the back of a mouse with simultaneous photoacoustic/ultrasound imaging. Through the fusion of multi-modal images, accurate positioning of melanoma and its surrounding normal tissues were realized. This work will further promote the application of photoacoustic imaging in the clinical diagnosis of early melanoma.


Assuntos
Melanoma/diagnóstico por imagem , Imagem Multimodal/métodos , Técnicas Fotoacústicas/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Detecção Precoce de Câncer/métodos , Melaninas/análise , Melanoma/química , Melanoma/patologia , Metais , Camundongos , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , Neoplasias Cutâneas/química , Neoplasias Cutâneas/patologia
14.
J Environ Sci (China) ; 109: 219-236, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607670

RESUMO

Certain poly- and perfluoroalkyl substances (PFASs) exhibit significant bioaccumulation/biomagnification behaviors in ecosystems. PFASs, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS) and related precursors, have elicited attention from both public and national regulatory agencies, which has resulted in worldwide restrictions on their production and use. Apex predators occupy the top trophic positions in ecosystems and are most affected by the biomagnification behavior of PFASs. Meanwhile, the long lifespans of apex predators also lead to the high body burden of PFASs. The high body burden of PFASs might be linked to adverse health effects and even pose a potential threat to their reproduction. As seen in previous reviews of PFASs, knowledge is lacking between the current stage of the PFAS body burden and related effects in apex predators. This review summarized PFAS occurrence in global apex predators, including information on the geographic distribution, levels, profiles, and tissue distribution, and discussed the trophic transfer and ecotoxicity of PFASs. In the case where legacy PFASs were restricted under international convention, the occurrence of novel PFASs, such as 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and perfluoroethylcyclohexane sulfonate (PFECHS), in apex predators arose as an emerging issue. Future studies should develop an effective analytical method and focus on the toxicity and trophic transfer behavior of novel PFASs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ecossistema , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Distribuição Tecidual
15.
Biophys J ; 118(5): 1058-1066, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31995740

RESUMO

Detection of the transition between the two myosin isoforms α- and ß-myosin in living cardiomyocytes is essential for understanding cardiac physiology and pathology. In this study, the differences in symmetry of polarization spectra obtained from α- and ß-myosin in various mammalian ventricles and propylthiouracil-treated rats are explored through polarization-dependent second harmonic generation microscopy. Here, we report for the, to our knowledge, first time that α- and ß-myosin, as protein crystals, possess different symmetries: the former has C6 symmetry, and the latter has C3v. A single-sarcomere line scan further demonstrated that the differences in polarization-spectrum symmetry between α- and ß-myosin came from their head regions: the head and neck domains of α- and ß-myosin account for the differences in symmetry. In addition, the dynamic transition of the polarization spectrum from C6 to C3v line profile was observed in a cell culture in which norepinephrine induced an α- to ß-myosin transition.


Assuntos
Miosinas Cardíacas , Sarcômeros , Animais , Miócitos Cardíacos , Miosinas , Ratos , Miosinas Ventriculares
16.
Protein Expr Purif ; 167: 105549, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31805395

RESUMO

Fructooligosaccharides (FOS) have widely used for the manufacture of low-calorie and functional foods, because they can inhibit intestinal pathogenic microorganism growth and increase the absorption of Ca2+ and Mg2+. In this study, the novel fructosyltransferase (FTase) from Aspergillus oryzae strain S719 was successfully purified and characterized. The specific activity of the final purified material was 4200 mg-1 with purification ratio of 66 times and yield of 26%. The molecular weight of FTase of A. oryzae S719 was around 95 kDa by SDS-PAGE, which was identified as a type of FTase by Mass Spectrometry (MS). The purified FTase had optimum temperature and pH of 55 °C and 6.0, respectively. The FTase showed to be stable with more than 80% of its original activity at room temperature after 12 h and maintaining activity above 90% at pH 4.0-11.0. The Km and kcat values of the FTase were 310 mmol L-1 and 2.0 × 103 min-1, respectively. The FTase was activated by 5 mmol L-1 Mg2+ and 10 mmol L-1 Na+ (relative activity of 116 and 114%, respectively), indicating that the enzyme was Mg2+ and Na+ dependent. About 64% of FOS was obtained by the purified FTase under 500 g L-1 sucrose within 4 h of reaction time, which was the shortest reaction time to be reported regarding the purified enzyme production of FOS. Together, these results indicated that the FTase of A. oryzae S719 is an excellent candidate for the industrial production of FOS.


Assuntos
Aspergillus oryzae/enzimologia , Hexosiltransferases , Oligossacarídeos/metabolismo , Indústria Alimentícia , Hexosiltransferases/biossíntese , Hexosiltransferases/química , Hexosiltransferases/isolamento & purificação
17.
Luminescence ; 35(6): 955-959, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32329180

RESUMO

Realizing efficient solid-state luminescence is of great important to expand quantum dots (QDs) application fields. This work reports the preparation of CdTe@BaCO3 composite by a one-pot precipitation method. Both steady-state PL and PL decay characteristics in either solid-state or colloid solution show no obvious difference, mainly benefited from the effective protection of BaCO3 on QDs from the external environment. By utilizing green and red CdTe QDs as dual-color emission centers, precise emitting-color control from green (0.312, 0.667) to red (0.691, 0.292) could be achieved in CdTe@BaCO3 composite by adjusting volume ratio of CdTe solution precursor. Our results demonstrate that this composite material shows bright solid-state luminescence and facile adjustment of the emitting color in QDs-based composite is feasible, which could offer new path to design color-tunable luminescent materials for future optoelectronic applications.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Luminescência , Telúrio
18.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756361

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an iron-dependent non-heme oxygenase involved in the catabolic pathway of tyrosine, which is an important enzyme in the transformation of 4-hydroxyphenylpyruvic acid to homogentisic acid, and thus being considered as herbicide target. Within this study, a set of multiple structure-based pharmacophore models for HPPD inhibitors were developed. The ZINC and natural product database were virtually screened, and 29 compounds were obtained. The binding mode of HPPD and its inhibitors obtained through molecular docking study showed that the residues of Phe424, Phe381, His308, His226, Gln307 and Glu394 were crucial for activity. Molecular-mechanics-generalized born surface area (MM/GBSA) results showed that the coulomb force, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. These efforts will greatly contribute to design novel and effective HPPD inhibitory herbicides.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Inibidores Enzimáticos/química , Estrutura Molecular , Interface Usuário-Computador , 4-Hidroxifenilpiruvato Dioxigenase/química , Sítios de Ligação , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
19.
Small ; 15(42): e1902424, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31448529

RESUMO

Charge transfer in transition-metal-dichalcogenides (TMDs) heterostructures is a prerequisite for the formation of interlayer excitons, which hold great promise for optoelectronics and valleytronics. Charge accumulation accompanied by a charge-transfer process can introduce considerable effect on interlayer exciton-based applications; nevertheless, this aspect has been rarely studied up to date. This work demonstrates how the charge accumulation affects the light emission of interlayer excitons in van der Waals heterobilayers (HBs) consisting of monolayer WSe2 and WS2 . As excitation power increases, the photoluminescence intensity of interlayer excitons increases more rapidly than that of intralayer excitons. The phenomenon can be explained by charge-accumulation effect, which not only increases the recombination probability of interlayer excitons but also saturates the charge-transfer process. This scenario is further confirmed by a careful examination of trion binding energy of WS2 , which nonlinearly increases with the increase of the excitation power before reaching a maximum of about 75 meV. These investigations provide a better understanding of interlayer excitons and trions in HBs, which may provoke further explorations of excitonic physics as well as TMDs-based devices.

20.
Appl Opt ; 58(11): 2845-2853, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31044887

RESUMO

Imaging through scattering media has been a long standing challenge in many disciplines. One of the promising solutions to address the challenge is the wavefront shaping technique, in which the phase distortion due to a scattering medium is corrected by a phase modulation device such as a spatial light modulator (SLM). However, the wide-field imaging speed is limited either by the feedback-based optimization to search the correction phase or by the update rate of SLMs. In this report, we introduce a new method called digital holographic wavefront correction, in which the correction phase is determined by a single-shot off-axis holography. The correction phase establishes the so-called "scattering lens", which allows any objects to be imaged through scattering media; in our case, the "scattering lens" is a digital one established through computational methods. As no SLM is involved in the imaging process, the imaging speed is significantly improved. We have demonstrated that moving objects behind scattering media can be recorded at the speed of 2.8 fps with each frame corrected by the updated correction phase while the image contrast is maintained as high as 0.9. The image speed can potentially reach the video rate if the computing power is sufficiently high. We have also demonstrated that the digital wavefront correction method also works when the light intensity is low, which implicates its potential usefulness in imaging dynamic processes in biological tissues.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa