Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 36(6): 2160-2175, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38412459

RESUMO

Synergistic optimization of key agronomic traits by traditional breeding has dramatically enhanced crop productivity in the past decades. However, the genetic basis underlying coordinated regulation of yield- and quality-related traits remains poorly understood. Here, we dissected the genetic architectures of seed weight and oil content by combining genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) using 421 soybean (Glycine max) accessions. We identified 26 and 33 genetic loci significantly associated with seed weight and oil content by GWAS, respectively, and detected 5,276 expression quantitative trait loci (eQTLs) regulating expression of 3,347 genes based on population transcriptomes. Interestingly, a gene module (IC79), regulated by two eQTL hotspots, exhibited significant correlation with both seed weigh and oil content. Twenty-two candidate causal genes for seed traits were further prioritized by TWAS, including Regulator of Weight and Oil of Seed 1 (GmRWOS1), which encodes a sodium pump protein. GmRWOS1 was verified to pleiotropically regulate seed weight and oil content by gene knockout and overexpression. Notably, allelic variations of GmRWOS1 were strongly selected during domestication of soybean. This study uncovers the genetic basis and network underlying regulation of seed weight and oil content in soybean and provides a valuable resource for improving soybean yield and quality by molecular breeding.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Locos de Características Quantitativas , Sementes , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Óleos de Plantas/metabolismo , Óleo de Soja/metabolismo , Óleo de Soja/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multiômica
2.
J Transl Med ; 21(1): 915, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104081

RESUMO

BACKGROUND: SARS-CoV-2, the pathogen of COVID-19, is a worldwide threat to human health and causes a long-term burden on the cardiovascular system. Individuals with pre-existing cardiovascular diseases are at higher risk for SARS-CoV-2 infection and tend to have a worse prognosis. However, the relevance and pathogenic mechanisms between COVID-19 and cardiovascular diseases are not yet completely comprehended. METHODS: Common differentially expressed genes (DEGs) were obtained in datasets of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2 and myocardial tissues from heart failure patients. Further GO and KEGG pathway analysis, protein-protein interaction (PPI) network construction, hub genes identification, immune microenvironment analysis, and drug candidate predication were performed. Then, an isoproterenol-stimulated myocardial hypertrophy cell model and a transverse aortic constriction-induced mouse heart failure model were employed to validate the expression of hub genes. RESULTS: A total of 315 up-regulated and 78 down-regulated common DEGs were identified. Functional enrichment analysis revealed mitochondrial metabolic disorders and extensive immune inflammation as the most prominent shared features of COVID-19 and cardiovascular diseases. Then, hub DEGs, as well as hub immune-related and mitochondria-related DEGs, were screened. Additionally, nine potential therapeutic agents for COVID-19-related cardiovascular diseases were proposed. Furthermore, the expression patterns of most of the hub genes related to cardiovascular diseases in the validation dataset along with cellular and mouse myocardial damage models, were consistent with the findings of bioinformatics analysis. CONCLUSIONS: The study unveiled the molecular networks and signaling pathways connecting COVID-19 and cardiovascular diseases, which may provide novel targets for intervention of COVID-19-related cardiovascular diseases.


Assuntos
COVID-19 , Doenças Cardiovasculares , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Humanos , Animais , Camundongos , Doenças Cardiovasculares/genética , SARS-CoV-2 , Biologia Computacional , Modelos Animais de Doenças , Inflamação/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa