Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Nanomedicine ; 30: 102282, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32771420

RESUMO

While nitric oxide (NO) can remedy vasoconstriction, inhalation of NO may cause systematic toxicity. We report a goldsome, which comprises a hollowed poly(lactic-co-glycolic acid) (PLGA) polymersome with S-nitrosoglutathione (GSNO, a NO donor) molecules and gold nanoparticles (Au NPs) incorporated in its hydrophilic core and hydrophobic membrane, respectively. Photothermal heating caused breakdown of polymersomes and enabled NO generation through reaction between GSNO and Au NPs. Photo-illumination at the zebrafish head led to local NO generation and selective cerebral vasodilation while it had little effects in regions away from the illumination site, and effectively mitigated hypoxia induced cerebral vasoconstriction. We demonstrate a translational potential by showing photo-stimulated NO generation with a clinical intravascular optical catheter. In conclusion, the goldsome, which enables light stimulated local NO generation and can be delivered with clinical intravascular optical catheters, should extend applications of NO therapies while surmounting limitations associated with systemic administration.


Assuntos
Ouro/química , Luz , Nanopartículas Metálicas/química , Óxido Nítrico/biossíntese , Vasoconstrição/efeitos dos fármacos , Animais , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/toxicidade , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , S-Nitrosoglutationa/química , Peixe-Zebra/embriologia
2.
Nanomedicine ; 14(7): 2205-2213, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30055269

RESUMO

Peripheral Arterial Occlusive Disease (PAOD) is an aging disease that affects the quality of life of many people by its intermittent claudication and critical limb ischemia presentations. Traditional treatment and management of PAOD are asking patients to make a life change and medication with antiplatelet, statins and cilostazol, which decrease the possibility of clot formation. Our strategy has employed a magnetic Fe3O4-PLGA polymersome to carry the cilostazol into the ischemic area by magnetic attraction following remote-control drug release through low-energy ultrasound exposure. In the animal studies, the cilostazol-loaded Fe3O4-PLGA polymersomes were injected and accumulated at ischemic leg through magnetic attraction. Then, using a clinical-use ultrasound machine the leg was irradiated to forward cilostazol release from the accumulated polymersomes. Dramatically, we found an observable result of bloody flux recovery in the leg after 7 days compared to the non-treated leg that showed no evidence of the blood recovery.


Assuntos
Arteriopatias Oclusivas/tratamento farmacológico , Cilostazol/administração & dosagem , Liberação Controlada de Fármacos , Membro Posterior/irrigação sanguínea , Isquemia/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Doença Arterial Periférica/tratamento farmacológico , Polímeros/administração & dosagem , Ultrassonografia , Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/química , Animais , Arteriopatias Oclusivas/patologia , Broncodilatadores/administração & dosagem , Compostos Férricos/química , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Doença Arterial Periférica/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química
3.
Nano Lett ; 16(6): 3493-9, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27148804

RESUMO

The hypoxia region in a solid tumor has been recognized as a complex microenvironment revealing very low oxygen concentration and deficient nutrients. The hypoxic environment reduces the susceptibility of the cancer cells to anticancer drugs, low response of free radicals, and less proliferation of cancer cells in the center of the solid tumors. However, the reduced oxygen surroundings provide an appreciable habitat for anaerobic bacteria to colonize. Here, we present the bacteria-mediated targeting hypoxia to offer the expandable spectra for diagnosis and therapy in cancer diseases. Two delivery approaches involving a cargo-carrying method and an antibody-directed method were designed to deliver upconversion nanorods for imaging and Au nanorods for photothermal ablation upon near-infrared light excitation for two forms of the anaerobic Bifidobacterium breve and Clostridium difficile. The antibody-directed strategy shows the most effective treatment giving stronger imaging and longer retention period and effective therapy to completely remove tumors.


Assuntos
Bifidobacterium breve/fisiologia , Clostridioides difficile/fisiologia , Portadores de Fármacos , Nanotubos/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Anticorpos/química , Bifidobacterium breve/imunologia , Linhagem Celular Tumoral , Clostridioides difficile/imunologia , Liberação Controlada de Fármacos , Ouro/química , Xenoenxertos , Humanos , Luz , Camundongos Endogâmicos C57BL , Camundongos Nus , Tamanho da Partícula , Fotoquimioterapia , Espectrometria de Fluorescência , Hipóxia Tumoral
4.
Chemistry ; 22(6): 1926-1930, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26752423

RESUMO

Platinum(II)-sulindac complexes [{η2 -C5 H4 SN(O)}Pt(DMSO){O(C=O)Sulindac}], [{η2 -C5 H4 SN(O)}PtCl{(S=O)Sulindac}], [{η2 -C5 H4 SN(O)}PtCl{(S=O)Sulindac-succinimide}], and [{η2 -C5 H4 SN(O)}PtCl{(S=O)Sulindac-thymidine}] were synthesized that exhibited IC50 values of 2.9-4.8 µm against human oral cancer cells OECM1. The poly(lactic-co-glycolic acid) (PLGA) encapsulated [{η2 -C5 H4 SN(O)}PtCl{(S=O)Sulindac}] also showed cytotoxic activity although less potent than the pristine species.

5.
Phys Chem Chem Phys ; 17(30): 19854-61, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26159896

RESUMO

In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropriate addition of Au@silica NPs regardless of the silica-shell thickness. Compared to the P3HT:PCBM/ZnO NR hybrid solar cell, a 63% enhancement in the efficiency is achieved by the P3HT:PCBM/Au@silica NP/ZnO NR hybrid solar cell. The finite difference time domain simulations indicate that the strength of the Fano resonance, i.e., the electric field of the quasi-static asymmetric quadrupole, on the surface of Au@silica NPs in the P3HT:PCBM/ZnO NR hybrid significantly decreases with increasing thickness of the silica shell. Raman characterization reveals that the degree of P3HT order increases when Au@silica NPs are incorporated into the P3HT:PCBM/ZnO NR hybrid. The charge separation at the interface between P3HT and PCBM as well as the electron transport in the active layer are retarded by the electric field of the Fano resonance. Nevertheless, the prolongation of the electron lifetime and the reduction of the electron transit time in the P3HT:PCBM/ZnO NR hybrid solar cells, which result in an enhancement of electron collection, are achieved by the addition of Au@silica NPs. This may be attributed to the improvement in the degree of P3HT order and connectivity of PCBM when Au@silica NPs are incorporated into the P3HT:PCBM active layer.

6.
Chem Soc Rev ; 43(17): 6254-87, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811160

RESUMO

Noninvasive techniques, such as breath tests (urea breath test), blood pressure measurements using a sphygmomanometer and electrocardiography, were employed by a physician to perform classical diagnosis. The use of state-of-the-art noninvasive therapies at the organ level in modern medicine has gradually become possible. However, cancer treatment demands spatially and temporally controlled noninvasive therapy at the cell level because nonspecific toxicity often causes complicated side effects. To increase survival in cancer patients further, combination therapy and combination drugs are explored which demand high specificity to avoid combined-drug side effects. We believe that high specificity could be obtained by implementing near-infrared (NIR) light-assisted nanoparticles in photothermal therapy, chemotherapy, and photodynamic therapy. To refine this therapy and subsequently achieve high efficiency, novel nanomaterials have been designed and modified either to enhance the uptake and drug delivery to the cancer site, or control treatment to administer therapy efficiently. These modifications and developments have been demonstrated to achieve spatial and temporal control when conducting an in vivo xenograft, because the NIR light penetrated effectively the biological tissue. The nanoplatforms discussed in this review are grouped under the following subheadings: Au nanorods (NRs), Au nanoshells, other Au-related nanomaterials, graphene oxide, upconversion nanoparticles, and other related materials (including materials such as CuS, Fe3O4-related systems, and carbon nanotubes (CNTs)).


Assuntos
Raios Infravermelhos , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Animais , Ouro/química , Ouro/uso terapêutico , Grafite/química , Humanos
7.
J Am Chem Soc ; 136(28): 10062-75, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24953310

RESUMO

A new multifunctional nanoparticle to perform a near-infrared (NIR)-responsive remote control drug release behavior was designed for applications in the biomedical field. Different from the previous studies in formation of Fe3O4-Au core-shell nanoparticles resulting in a spherical morphology, the heterostructure with polyhedral core and shell was presented with the truncated octahedral Fe3O4 nanoparticle as the core over a layer of trisoctahedral Au shell. The strategy of Fe3O4@polymer@Au was adopted using poly-l-lysine as the mediate layer, followed by the subsequent seeded growth of Au nanoparticles to form a Au trisoctahedral shell. Fe3O4@Au trisoctahedra possess high-index facets of {441}. To combine photothermal and chemotherapy in a remote-control manner, the trisoctahedral core-shell Fe3O4@Au nanoparticles were further covered with a mesoporous silica shell, yielding Fe3O4@Au@mSiO2. The bondable oligonucleotides (referred as dsDNA) were used as pore blockers of the mesoporous silica shell that allowed the controlled release, resulting in a NIR-responsive DNA-gated Fe3O4@Au@mSiO2 nanocarrier. Taking advantage of the magnetism, remotely triggered drug release was facilitated by magnetic attraction accompanied by the introduction of NIR radiation. DNA-gated Fe3O4@Au@mSiO2 serves as a drug control and release carrier that features functions of magnetic target, MRI diagnosis, and combination therapy through the manipulation of a magnet and a NIR laser. The results verified the significant therapeutic effects on tumors with the assistance of combination therapy consisting of magnetic guidance and remote NIR control.


Assuntos
Compostos Férricos/química , Ouro/química , Nanoestruturas/química , Oligonucleotídeos/química , Dióxido de Silício/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Magnetismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Tamanho da Partícula
8.
J Immunol ; 188(1): 68-76, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22156340

RESUMO

Gold nanoparticles (GNPs), which are generally thought to be bio-inert and non-cytotoxic, have become one of the most ideal nanomaterials for medical applications. Once engulfed by phagocytes, the immunological effects of GNPs are still of concern and require detailed investigation. Therefore, this study explored the immunological significance of GNPs on TLR-mediated innate immunity in murine macrophages. GNP causes specific inhibition of TLR9 (CpG oligodeoxynucleotides; CpG-ODNs) signal in macrophages. The impaired CpG-ODN-induced TNF-α production is GNP concentration- and size-dependent in murine Raw264.7 cells: a GNP of 4 nm in size is more potent than a GNP of 11, 19, 35, or 45 nm in size. Consistent with cytokine inhibition, the CpG-ODN-induced phosphorylation of NF-κB and JNK as well as NF-κB activation are suppressed by GNPs. GNPs accumulate in lysosomes after phagocytosis and also increase TLR9-associated lysosomal cathepsin expression and activities, but this is irrelevant to TLR9 inhibition by GNPs in our studies. In addition, GNPs affected TLR9 translocation in response to CpG-ODNs and to phagosomes. Further exploring how GNPs inhibited TLR9 function, we found that GNPs could bind to high-mobility group box-1 (which is involved in the regulation of TLR9 signaling) inside the lysosomes. The current studies demonstrate that size-dependent inhibition of TLR9 function by GNP may be attributed to its binding to high-mobility group box-1.


Assuntos
Ouro , Macrófagos/imunologia , Nanopartículas Metálicas , Fagocitose/imunologia , Transdução de Sinais/imunologia , Receptor Toll-Like 9/imunologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Proteína HMGB1/imunologia , Lisossomos/imunologia , Macrófagos/citologia , Camundongos , NF-kappa B/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Tamanho da Partícula , Fagocitose/efeitos dos fármacos , Fagossomos/imunologia , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia
9.
Nanomedicine ; 10(4): 819-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24333595

RESUMO

Magnetic manganese ferrite (MnFe2O4) nanoparticles with approximately 100nm in diameter were used to improve the performance of an immunoassay for detecting influenza infections. The synthesized nanoparticles were tested for long-term storage to confirm the stability of their thermal decomposition process. Then, an integrated microfluidic system was developed to perform the diagnosis process automatically, including virus purification and detection. To apply these nanoparticles for influenza diagnosis, a micromixer was optimized to reduce the dead volume within the microfluidic chip. Furthermore, the mixing index of the micromixer could achieve as high as 97% in 2seconds. The optical signals showed that this nanoparticle-based immunoassay with dynamic mixing could successfully achieve a detection limit of influenza as low as 0.007 HAU. When compared with the 4.5-µm magnetic beads, the optical signals of the MnFe2O4 nanoparticles were twice as sensitive. Furthermore, five clinical specimens were tested to verify the usability of the developed system. FROM THE CLINICAL EDITOR: In this study, magnetic manganese ferrite nanoparticles were used to improve the performance of a novel immunoassay for the rapid and efficient detection of influenza infections.


Assuntos
Óxido Ferroso-Férrico/química , Influenza Humana/diagnóstico , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Orthomyxoviridae/imunologia , Animais , Cães , Humanos , Imunoensaio/métodos , Células Madin Darby de Rim Canino , Técnicas Analíticas Microfluídicas/instrumentação , Orthomyxoviridae/química , Sensibilidade e Especificidade
10.
Adv Healthc Mater ; : e2400746, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683107

RESUMO

Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.

11.
Adv Mater ; : e2404120, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727702

RESUMO

This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.

12.
Biomed Microdevices ; 15(3): 539-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23420191

RESUMO

Seasonal and novel influenza infections have the potential to cause worldwide pandemics. In order to properly treat infected patients and to limit its spread, a rapid, accurate and automatic influenza diagnostic tool needs to be developed. This study therefore presents a new integrated microfluidic system for the rapid detection of influenza infections. It integrated a suction-type, pneumatic-driven microfluidic control module, a magnetic bead-based fluorescent immunoassay (FIA) and an end-point optical detection module. This new system can successfully distinguish between influenza A and B using a single chip test within 15 min automatically, which is faster than existing devices. By utilizing the micromixers to thoroughly wash out the sputum-like mucus, this microfluidic system could be used for the diagnosis of clinical specimens and reduced the required sample volume to 40 µL. Furthermore, the results of diagnostic assays from 86 patient specimens have demonstrated that this system has 84.8 % sensitivity and 75.0 % specificity. This developed system may provide a powerful platform for the fast screening of influenza infections.


Assuntos
Imunoensaio/métodos , Vírus da Influenza A/isolamento & purificação , Influenza Humana/virologia , Imãs/química , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Vírion/isolamento & purificação , Anticorpos Monoclonais/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Limite de Detecção , Fatores de Tempo
13.
Nat Nanotechnol ; 18(12): 1492-1501, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537274

RESUMO

Dynamic therapies have potential in cancer treatments but have limitations in efficiency and penetration depth. Here a membrane-integrated liposome (MIL) is created to coat titanium dioxide (TiO2) nanoparticles to enhance electron transfer and increase radical production under low-dose X-ray irradiation. The exoelectrogenic Shewanella oneidensis MR-1 microorganism presents an innate capability for extracellular electron transfer (EET). An EET-mimicking photocatalytic system is created by coating the TiO2 nanoparticles with the MIL, which significantly enhances superoxide anions generation under low-dose (1 Gy) X-ray activation. The c-type cytochromes-constructed electron channel in the membrane mimics electron transfer to surrounding oxygen. Moreover, the hole transport in the valence band is also observed for water oxidation to produce hydroxyl radicals. The TiO2@MIL system is demonstrated against orthotopic liver tumours in vivo.


Assuntos
Lipossomos , Shewanella , Elétrons , Fusão de Membrana , Transporte de Elétrons , Oxirredução
14.
Nat Commun ; 14(1): 4709, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543632

RESUMO

Chemodynamic therapy (CDT) uses the Fenton or Fenton-like reaction to yield toxic ‧OH following H2O2 → ‧OH for tumoral therapy. Unfortunately, H2O2 is often taken from the limited endogenous supply of H2O2 in cancer cells. A water oxidation CoFe Prussian blue (CFPB) nanoframes is presented to provide sustained, external energy-free self-supply of ‧OH from H2O to process CDT and/or photothermal therapy (PTT). Unexpectedly, the as-prepared CFPB nanocubes with no near-infrared (NIR) absorption is transformed into CFPB nanoframes with NIR absorption due to the increased Fe3+-N ≡ C-Fe2+ composition through the proposed proton-induced metal replacement reactions. Surprisingly, both the CFPB nanocubes and nanoframes provide for the self-supply of O2, H2O2, and ‧OH from H2O, with the nanoframe outperforming in the production of ‧OH. Simulation analysis indicates separated active sites in catalyzation of water oxidation, oxygen reduction, and Fenton-like reactions from CFPB. The liposome-covered CFPB nanoframes prepared for controllable water-driven CDT for male tumoral mice treatments.


Assuntos
Nanopartículas , Neoplasias , Masculino , Animais , Camundongos , Domínio Catalítico , Peróxido de Hidrogênio , Catálise , Água , Linhagem Celular Tumoral
15.
Chemistry ; 18(13): 4107-14, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22344979

RESUMO

A solution approach based on Au(CN)(2)(-) chemistry is reported for the formation of nanoparticles. The covalent character of the Au(CN)(2)(-) precursor was exploited in the formation of sub-10 nm nanospheres (≈2.4 nm) and highly monodisperse icosahedral Au nanoparticles (≈8 nm) at room temperature in a one-pot aqueous synthesis. The respective spherical and icosahedral Au morphologies can be controlled by either the absence or presence of the polymer polyvinylpyrrolidone (PVP). Using Au(CN)(2)(-) as a metal ion source, our findings suggest that the addition of citrate ions is necessary to enhance the particle formation rate as well as to generate a more homogeneous colloidal dispersion. Because of the presence of oxygen and the operation of a CN(-) etching process associated with Au(CN)(2)(-) complex formation, an interesting reversible formation-dissolution process was observed, which allowed us to repeatedly prepare spherical and icosahedral Au nanoparticles. Time-dependent TEM images and UV/Vis spectra were carefully acquired to study the reversibility of this formation-dissolution process. In view of the accompanying generation of toxic cyanide anions, we have developed a protocol to recycle cyanide in the presence of citrate ions through ferric ferrocyanide formation. After completion of particle formation, the residual solutions containing citrate ions and cyanide ions were processed to stain iron oxide nanoparticles endocytosized in cells. Additionally, the as-prepared 8 nm Au icosahedra could be isolated and grown to larger 57 nm-sized icosahedra using the seed-mediated growth approach.


Assuntos
Ferrocianetos/síntese química , Ouro/química , Nanopartículas Metálicas/química , Nanosferas/química , Ferrocianetos/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão
16.
J Nanosci Nanotechnol ; 12(3): 2548-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755089

RESUMO

Two-dimensional Ag nanoprisms readily formed Ag triangular nanoframes upon electron beam irradiation. Following meso-2, 3-dimercaptosuccinicacid (DMSA) ripening behavior, continuous electron beam exposure transformed a solid nanoplate into a core/void/shell morphology, which then evolved into a hollow nanoframe structure. TEM was used to observe the ripening and etching processes of Ag nanoprisms as a function of DMSA concentration and electron irradiation time. X-ray diffraction (XRD) and FT-IR analysis were conducted to characterize the Ag nanoprism structure and surface before and after treatment with DMSA. X-ray photoelectron spectroscopy (XPS) was used to determine surface chemical compositions and indicated DMSA was adsorbed on the Ag nanoprisms in the form of Ag(+)-S(-). Raman measurements provided evidence of a disulfide group on Ag nanoprisms. Similar organosulfur structures such as mercaptosuccinic acid and 2-mercaptoacetic acid were also studied with results suggesting that the two S-H groups of dithiol DMSA played the crucial role in nanoframe fabrication. Using the same strategy with DMSA, the nano-architecture can be extended to 2D nanodiscs yielding nanorings.


Assuntos
Nanoestruturas , Prata/química , Compostos de Sulfidrila/química , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Difração de Raios X
17.
Adv Healthc Mater ; 11(20): e2201613, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35879269

RESUMO

Photodynamic therapy (PDT) is traditionally ineffective for deeply embedded tumors due to the poor penetration depth of the excitation light. Chemiluminescence resonance energy transfer (CRET) has emerged as a promising mode of PDT without external light. To date, related research has frequently used endogenous hydrogen peroxide (H2 O2 ) and oxygen (O2 ) inside the solid tumor microenvironment to trigger CRET-mediated PDT. Unfortunately, this significantly restricts treatment efficacy and the development of further biomedical applications because of the limited amounts of endogenous H2 O2 and O2 . Herein, a nanohybrid (mSiO2 /CaO2 /CPPO/Ce6: mSCCC) nanoparticle (NP) is designed to achieve synergistic CRET-mediated PDT and calcium (Ca2+ )-overload-mediated therapy. The calcium peroxide (CaO2 ) formed inside mesoporous SiO2 (mSC) with the inclusion of the chemiluminescent agent (CPPO) and photosensitizer (Ce6) self-supplies H2 O2 , O2 , and Ca2+ allowing for the subsequent treatments. The Ce6 in mSCCC NPs is excited by chemical energy in situ following the supply of H2 O2 and O2 to produce singlet oxygen (1 O2 ). The nanohybrid NPs are coated with stearic acid to avoid decomposition during blood circulation through contact with aqueous environment. This nanohybrid shows promising performance in the generation of 1 O2 for external light-free PDT and the release of Ca2+ ions for Ca2+ -overloaded therapy against orthotopic hepatocellular carcinoma.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cálcio , Oxigênio Singlete , Dióxido de Silício/química , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Nanopartículas/química , Oxigênio , Neoplasias Hepáticas/tratamento farmacológico , Nanotecnologia , Microambiente Tumoral
18.
ACS Appl Mater Interfaces ; 14(21): 24144-24159, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579575

RESUMO

Lung cancer is considered among the deadliest cancers with a poor prognosis. Au@PG nanoparticles (NPs) are gold (Au)-based NPs featuring a polyaniline-based glyco structure (PG) generated from the polymerization of ortho-nitrophenyl-ß-d-galactopyranoside (ONPG) with promising M1 macrophage polarization activity, resulting in tumor remodeling and from a cold to a hot microenvironment, which promotes the cytotoxic T cell response and tumor inhibition. The combination of Au@PG NPs and anti-programmed cell death protein 1 (PD-1) therapy improved tumor inhibition and immunosuppression, accompanied by the secretion of immunogenic cytokines. A one-pot synthetic method was developed to achieve glyco-condensation during the formation of Au@PG NPs, which induced macrophage polarization more efficiently than Au@glucose, Au@mannose, and Au@galactose NPs. The switch from M2 to M1 macrophages was dependent on NP size, with smaller Au@PG NPs performing better than larger ones, with effectiveness ranked as follows: 32.2 nm ≈ 29.8 nm < 26.4 nm < 18.3 nm. Cellular uptake by endocytosis induced size-dependent endoplasmic reticulum (ER) stress, which resulted in the activation of spleen tyrosine kinase (SYK), leading to immune modulations and macrophage polarization. Our results suggested the promising potential of Au@PG NPs in lung cancer immunotherapy.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Nanopartículas , Compostos de Anilina , Ouro/química , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Microambiente Tumoral
19.
Nat Commun ; 13(1): 7772, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522345

RESUMO

Herein, we employ a galvanic replacement approach to create atomically dispersed Au on degradable zero-valent Cu nanocubes for tumor treatments on female mice. Controlling the addition of precursor HAuCl4 allows for the fabrication of different atomic ratios of AuxCuy. X-ray absorption near edge spectra indicates that Au and Cu are the predominant oxidation states of zero valence. This suggests that the charges of Au and Cu remain unchanged after galvanic replacement. Specifically, Au0.02Cu0.98 composition reveals the enhanced •OH generation following O2 → H2O2 → •OH. The degradable Au0.02Cu0.98 released Cu+ and Cu2+ resulting in oxygen reduction and Fenton-like reactions. Simulation studies indicate that Au single atoms boot zero-valent copper to reveal the catalytic capability of Au0.02Cu0.98 for O2 → H2O2 → •OH as well. Instead of using endogenous H2O2, H2O2 can be sourced from the O2 in the air through the use of nanocubes. Notably, the Au0.02Cu0.98 structure is degradable and renal-clearable.


Assuntos
Cobre , Oxigênio , Feminino , Camundongos , Animais , Cobre/química , Oxigênio/química , Peróxido de Hidrogênio/química , Oxirredução , Ouro
20.
ACS Appl Mater Interfaces ; 14(11): 13056-13069, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35253424

RESUMO

Ineffective site-specific delivery has seriously impeded the efficacy of nanoparticle-based drugs to a disease site. Here, we report the preparation of three different shapes (sphere, scroll, and oblate) to systematically evaluate the impact of the marginative delivery on the efficacy of magnetic resonance (MR) imaging-guided X-ray irradiation at a low dose of 1 Gy. In addition to the shape effect, the therapeutic efficacy is investigated for the first time to be strongly related to the structure effect that is associated with the chemical activity. The enhanced particle-vessel wall interaction of both the flat scroll and oblate following margination dynamics leads to greater accumulation in the lungs, resulting in superior performance over the sphere against lung tumor growth and suppression of lung metastasis. Furthermore, the impact of the structural discrepancy in nanoparticles on therapeutic efficacy is considered. The tetragonal oblate reveals that the feasibility of the charge-transfer process outperforms the orthorhombic scroll and cubic sphere to suppress tumors. Finally, surface area is also a crucial factor affecting the efficacy of X-ray treatments from the as-prepared particles.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Terapia por Raios X , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Nanopartículas/química , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa