RESUMO
BACKGROUND: Gastrointestinal dysfunction frequently occurs following traumatic brain injury (TBI) and significantly increases posttraumatic complications. TBI can lead to alterations in gut microbiota. The neuroprotective effects of hyperbaric oxygen (HBO) have not been well recognized after TBI. The study''s aim was to investigate the impact of HBO on TBI-induced dysbiosis in the gut and the pathological changes in the brain following TBI. METHODS: Anesthetized male Sprague-Dawley rats were randomly assigned to three groups: sham surgery plus normobaric air (21% oxygen at 1 atmospheres absolute), TBI (2.0 atm) plus normobaric air, and TBI (2.0 atm) plus HBO (100% oxygen at 2.0 atmospheres absolute) for 60 min immediately after TBI, 24 h later, and 48 h later. The brain injury volume, tumor necrosis factor-α expression in microglia and astrocytes, and neuronal apoptosis in the brain were subsequently determined. The V3-V4 regions of 16S ribosomal rRNA in the fecal samples were sequenced, and alterations in the gut microbiome were statistically analyzed. All parameters were evaluated on the 3rd day after TBI. RESULTS: Our results demonstrated that HBO improved TBI-induced neuroinflammation, brain injury volume, and neuronal apoptosis. HBO appeared to increase the abundance of aerobic bacteria while inhibiting anaerobic bacteria. Intriguingly, HBO reversed the TBI-mediated decrease in Prevotella copri and Deinococcus spp., both of which were negatively correlated with neuroinflammation and brain injury volume. TBI increased the abundance of these gut bacteria in relation to NOD-lik0065 receptor signaling and the proteasome pathway, which also exhibited a positive correlation trend with neuro inflammation and apoptosis. The abundance of Prevotella copri was negatively correlated with NOD-like receptor signaling and the Proteasome pathway. CONCLUSIONS: Our study demonstrated how the neuroprotective effects of HBO after acute TBI might act through reshaping the TBI-induced gut dysbiosis and reversing the TBI-mediated decrease of Prevotella copri.
RESUMO
The objective of this study was to investigate gut dysbiosis and its metabolic and inflammatory implications in pediatric metabolic dysfunction-associated fatty liver disease (MAFLD). This study included 105 children and utilized anthropometric measurements, blood tests, the Ultrasound Fatty Liver Index, and fecal DNA sequencing to assess the relationship between gut microbiota and pediatric MAFLD. Notable decreases in Lachnospira spp., Faecalibacterium spp., Oscillospira spp., and Akkermansia spp. were found in the MAFLD group. Lachnospira spp. was particularly reduced in children with MAFLD and hepatitis compared to controls. Both MAFLD groups showed a reduction in flavone and flavonol biosynthesis sequences. Lachnospira spp. correlated positively with flavone and flavonol biosynthesis and negatively with insulin levels and insulin resistance. Body weight, body mass index (BMI), and total cholesterol levels were inversely correlated with flavone and flavonol biosynthesis. Reduced Lachnospira spp. in children with MAFLD may exacerbate insulin resistance and inflammation through reduced flavone and flavonol biosynthesis, offering potential therapeutic targets.
Assuntos
Flavonas , Hepatite A , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Criança , Clostridiales , FlavonóisRESUMO
Exosomal microRNAs (miRNAs) are novel, non-invasive biomarkers for facilitating communication and diagnosing cancer. However, only a few studies have investigated their function and role in the clinical diagnosis of breast cancer. To address this gap, we established a stable cell line, MDA-MB-231-CD63-RFP, and recruited 112 female participants for serum collection. We screened 88 exosomal miRNAs identified through microarray analysis of 231-CD63 and literature screening using real-time PCR; only exosomal miR-92b-5p was significantly increased in patients with breast cancer. It had a significant correlation with stage and discriminated patients from the control with an AUC of 0.787. Exosomal miR-92b-5p impacted the migration, adhesion, and spreading ability of normal human mammary epithelial recipient cells through the downregulation of the actin dynamics regulator MTSS1L. In clinical breast cancer tissue, the expression of MTSS1L was significantly inversely correlated with tissue miR-92b-5p, and high expression of MTSS1L was associated with better 10-year overall survival rates in patients undergoing hormone therapy. In summary, our studies demonstrated that exosomal miR-92b-5p might function as a non-invasive body fluid biomarker for breast cancer detection and provide a novel therapeutic strategy in the axis of miR-92b-5p to MTSS1L for controlling metastasis and improving patient survival.
Assuntos
Biomarcadores , Neoplasias da Mama , Exossomos , MicroRNAs , Feminino , Humanos , Biomarcadores/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/antagonistas & inibidoresRESUMO
BACKGROUND: Diabetes mellitus (DM) is a major risk factor for tuberculosis (TB). Evidence has linked the DM-related dysbiosis of gut microbiota to modifiable host immunity to Mycobacterium tuberculosis infection. However, the crosslinks between gut microbiota composition and immunological effects on the development of latent TB infection (LTBI) in DM patients remain uncertain. METHODS: We prospectively obtained stool, blood samples, and medical records from 130 patients with poorly-controlled DM (pDM), defined as ever having an HbA1c > 9.0% within previous 1 year. Among them, 43 had LTBI, as determined by QuantiFERON-TB Gold in-Tube assay. The differences in the taxonomic diversity of gut microbiota between LTBI and non-LTBI groups were investigated using 16S ribosomal RNA sequencing, and a predictive algorithm was established using a random forest model. Serum cytokine levels were measured to determine their correlations with gut microbiota. RESULTS: Compared with non-LTBI group, the microbiota in LTBI group displayed a similar alpha-diversity but different beta-diversity, featuring decrease of Prevotella_9, Streptococcus, and Actinomyces and increase of Bacteroides, Alistipes, and Blautia at the genus level. The accuracy was 0.872 for the LTBI prediction model using the aforementioned 6 microbiome-based biomarkers. Compared with the non-LTBI group, the LTBI group had a significantly lower serum levels of IL-17F (p = 0.025) and TNF-α (p = 0.038), which were correlated with the abundance of the aforementioned 6 taxa. CONCLUSIONS: The study results suggest that gut microbiome composition maybe associated with host immunity relevant to TB status, and gut microbial signature might be helpful for the diagnosis of LTBI.
Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Tuberculose Latente , Humanos , Microbioma Gastrointestinal/imunologia , Imunidade , Tuberculose Latente/imunologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/imunologiaRESUMO
Non-endoscopic tools for the diagnostic evaluation of patients should be promoted in the field of biomedical assay and the need for highly sensitive, efficient, low-cost, and user-friendly sensors must be considered. Optical fibers are widely used in sensors because their properties meet the physical requirements for biomedical detection. The spectrum responses of the sensor create changes in refractive index, wavelength shifts, and transmission loss. This study presents a double helix DNA-shaped optical fiber sensor for biosensors. The sensing principle of the DNA-shaped sensor is based on the whispering gallery mode (WGM) formed by the interference in the fiber's bending region. The refractive index interference changes corresponding to the core and cladding layers, which create shifts in the spectrum affected by the radius of the bend. A self-assembled sensor layer formed with nanoparticles was coated onto the DNA-shaped sensor in a sandwich structure. The wavelength shifts in spectral response are traced by the concentrations of gastrin-17 at 0.1, 1, 10, and 50 µg ml-1. The sensing layer was formed from a layer-by-layer assembly of gold nanoparticles to improve the performance of the surface plasmon resonance (SPR).
Assuntos
Nanopartículas Metálicas , Fibras Ópticas , DNA , Gastrinas , Ouro/química , HumanosRESUMO
BACKGROUND/PURPOSE: Recent studies showed that Histone deacetylases 6 (HDAC6) inhibitors could improve arthritis in rheumatoid arthritis (RA) rodent models, whereas lower HDAC6 expression was observed in RA patients' synovial fibroblasts, raising the concerns to use HDAC6 inhibitors to treat RA patients. In the present study, we investigated the involvement of HDAC6 mRNA expression and promoter methylation in RA. METHODS: The DNA and RNAs were extracted from the peripheral blood mononuclear cells (PBMCs) from 138 RA patients and 102 healthy controls. The pyrosequencing technique was used for promoter methylation analysis. The quantitative real-time polymerase chain reaction was used to determine the HDAC6 mRNA expression. The patients' clinical characteristics and disease biomarkers were recorded when blood sampling. RESULTS: The HDAC6 mRNA expression was lower in the RA patients than controls (p = 0.001). The RA patients had significant hypomethylation of the HDAC6 promoter (p < 0.001). The HDAC6 promoter was hypo-methylated in the -229, -225, -144, and -142 CpG sites in RA patients (p < 0.05). Unexpectedly, promoter methylation and mRNA expression of the HDAC6 gene were positively associated (p < 0.001). The HDAC6 mRNA expression and promoter methylation status were associated with the risk of RA (p = 0.006 and 0.002, respectively). The inflammatory cytokines, TNF-α and IL-6, were significantly increased after HDAC6 knockdown in PMA-stimulated THP1 cells and SW982 cells (p < 0.05). CONCLUSION: The HDAC6 mRNA expression and promoter methylation were lower in RA patients. Both HDAC6 mRNA expression level and promoter hypomethylation were associated the susceptibility of RA. HDAC6 inhibitors seem not proper for RA patients' treatment.
Assuntos
Artrite Reumatoide , Desacetilase 6 de Histona , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Metilação de DNA/genética , Predisposição Genética para Doença , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Two cembranoids, including a new compound, lobocrassin I (1), as well as a known analogue, lobohedleolide (2), were obtained by solvent extraction from octocoral Lobophytum crassum. This study employed a spectroscopic approach to establish the structures of these two cembranoids, and utilized single-crystal X-ray diffraction analysis to determine their absolute configurations. The results of biological activity assays demonstrated that cembranoid 2 exhibited bioactivity against the protein expressions of inducible nitric oxide synthase (iNOS) lipopolysaccharide (LPS)-treated RAW 264.7 mouse macrophage cells.
Assuntos
Antozoários/química , Anti-Inflamatórios/isolamento & purificação , Diterpenos/isolamento & purificação , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Células RAW 264.7 , Difração de Raios XRESUMO
Resveratrol can affect the physiology or biochemistry of offspring in the maternal-fetal animal model. However, it exhibits low bioavailability in humans and animals. Fifteen-week SD pregnant female rats were orally administered bisphenol A (BPA) and/or resveratrol butyrate ester (RBE), and the male offspring rats (n = 4-8 per group) were evaluated. The results show that RBE treatment (BPA + R30) compared with the BPA group can reduce the damage caused by BPA (p < 0.05). RBE enhanced the expression of selected genes and induced extramedullary hematopoiesis and mononuclear cell infiltration. RBE increased the abundance of S24-7 and Adlercreutzia in the intestines of the male offspring rats, as well as the concentrations of short-chain fatty acids (SCFAs) in the feces. RBE also increased the antioxidant capacity of the liver by inducing Nrf2, promoting the expression of HO-1, SOD, and CAT. It also increased the concentration of intestinal SCFAs, enhancing the barrier formed by intestinal cells, thereby preventing BPA-induced metabolic disruption in the male offspring rats, and reduced liver inflammation. This study identified a potential mechanism underlying the protective effects of RBE against the liver damage caused by BPA exposure during the peri-pregnancy period, and the influence of the gut microbiota on the gut-liver axis in the offspring.
Assuntos
Compostos Benzidrílicos/efeitos adversos , Hepatopatias/prevenção & controle , Fenóis/efeitos adversos , Resveratrol/farmacologia , Animais , Antioxidantes/metabolismo , Compostos Benzidrílicos/farmacologia , Butiratos/metabolismo , Ésteres/metabolismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Microbioma Gastrointestinal , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Masculino , Fenóis/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Resveratrol/análogos & derivadosRESUMO
Resveratrol butyrate esters (RBE) are derivatives of resveratrol (RSV) and butyric acid and exhibit biological activity similar to that of RSV but with higher bioavailability. The aim of this study was designed as an animal experiment to explore the effects of RBE on the serum biochemistry, and fat deposits in the offspring rats exposed to bisphenol A (BPA), along with the growth and decline of gut microbiota. We constructed an animal model of perinatal Bisphenol A (BPA) exposure to observe the effects of RBE supplementation on obesity, blood lipids, and intestinal microbiota in female offspring rats. Perinatal exposure to BPA led to weight gain, lipid accumulation, high levels of blood lipids, and deterioration of intestinal microbiota in female offspring rats. RBE supplementation reduced the weight gain and lipid accumulation caused by BPA, optimised the levels of blood lipids, significantly reduced the Firmicutes/Bacteroidetes (F/B) ratio, and increased and decreased the abundance of S24-7 and Lactobacillus, respectively. The analysis of faecal short-chain fatty acid (SCFA) levels revealed that BPA exposure increased the faecal concentration of acetate, which could be reduced via RBE supplementation. However, the faecal concentrations of propionate and butyrate were not only significantly lower than that of acetate, but also did not significantly change in response to BPA exposure or RBE supplementation. Hence, RBE can suppress BPA-induced obesity in female offspring rats, and it demonstrates excellent modulatory activity on intestinal microbiota, with potential applications in perinatological research.
Assuntos
Compostos Benzidrílicos/toxicidade , Ácido Butírico/farmacologia , Obesidade , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Resveratrol/farmacologia , Animais , Ácidos Graxos Voláteis/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
This study aimed to develop a comb of microchannel and immunosensor based on long-period fiber grating using the process of Lithographie Galvanoformung Abformung-like micro-electromechanical systems (LIGA-like MEMS) for real-time and label-free detection of specific antigen. The coupling between propagating core and cladding modes was conducted from the comb of microchannel long-period fiber grating (CM-LPFG). The CM-LPFG-based immunosensor consisted of a microchannel structure through photoresist stacking processes and was sandwiched with an optical fiber to obtain a long-period structure. Specific immunoglobulin against protein antigen was immobilized onto an optical fiber surface and produced a real-time resonance effect on sensing specific protein antigen from the extracted protein mixtures of the cancer cell lines. The variable transmission loss was -14.07 dB, and the resonant wavelength shift was 11.239 nm. The low limit of detection for total protein concentration was 1.363 ng/µL. Our results revealed that the CM-LPFG-based immnosensor for real-time detection of label-free protein antigen is feasible and sensitive based on the diversification of a transmission loss and achieves specific immunosensing purposes for lab-on-fiber technology.
Assuntos
Antígenos/análise , Técnicas Biossensoriais/instrumentação , Imunoensaio/instrumentação , Limite de Detecção , Sistemas Microeletromecânicos/métodos , Antígenos/imunologia , Estudos de Viabilidade , Humanos , Imunoglobulinas/imunologia , Proteínas/análise , Proteínas/imunologiaRESUMO
This study presents a U-shaped optical fiber developed for a facile application of microRNA detection. It is fabricated by the lamping process and packaged in a quartz tube to eliminate human negligence. In addition, silanization and electrostatic self-assembly are employed to bind gold nanoparticles and miRNA-133a probe onto the silicon dioxide of the fiber surface. For Mahlavu of hepatocellular carcinoma (HCC), detection is determined by the wavelength shift and transmission loss of a U-shaped optical fiber biosensor. The spectral sensitivity of wavelength and their coefficient of determination are found at -218.319 nm/ ng/mL and 0.839, respectively. Concurrently, the sensitivity of transmission loss and their coefficient of determination are found at 162.394 dB/ ng/mL and 0.984, respectively. A method for estimating the limit of detection of Mahlavu is at 0.0133 ng/mL. The results show that the proposed U-shaped biosensor is highly specific to miRNA-133a and possesses good sensitivity to variations in specimen concentration. As such, it could be of substantial value in microRNA detection.
Assuntos
Técnicas Biossensoriais/instrumentação , MicroRNAs/análise , Fibras Ópticas , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Desenho de Equipamento , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Silanos , Dióxido de Silício/químicaRESUMO
BACKGROUND: Deregulated signal transducer and activator of transcription 3 (STAT3) signaling has been well documented in certain cancers. Alterations in specific negative regulators, such as protein inhibitor of activated STAT3 (PIAS3), may contribute to cancer development. METHODS: The expression of total PIAS3 was determined in 100 paired cancerous and non-cancerous breast tissues by immunoblotting and was statistically analyzed along with the clinicopathological characteristics and overall survival of the patients. XTT, immunoblotting, and chromatin immunoprecipitation (Chip) were used to examine the biological effect of PIAS3 in breast cancer cells. RESULTS: Hormone therapy failed to improve the overall survival in patients presenting with increased PIAS3 expression. Ectopic PIAS3 overexpression increased the proliferation and expression of cyclin D1 in estrogen receptor (ER)-positive MCF-7 and T47D cells, but decreased those in ER-negative MDA-MB-231 and SKBR3 cells. Furthermore, PIAS3 overexpression attenuated cytotoxicity of tamoxifen and increased proliferation and cyclin D1 expression in MCF-7 cells. PIAS3 also decreased the binding of itself on the cyclin D1 promoter and this decreased binding was not affected by tamoxifen. CONCLUSION: PIAS3 may serve as a biomarker for predicting hormone therapy stratification, although it is limited to those breast cancer patients receiving hormone therapy.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Metástase Linfática/genética , Chaperonas Moleculares/biossíntese , Proteínas Inibidoras de STAT Ativados/biossíntese , Fator de Transcrição STAT3/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Ciclina D1/biossíntese , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Linfática/patologia , Células MCF-7 , Chaperonas Moleculares/genética , Proteínas Inibidoras de STAT Ativados/genética , Tamoxifeno/administração & dosagemRESUMO
INTRODUCTION: Drugs and vaccines have been less studied as inducing or aggravating factors for psoriatic arthritis (PsA) compared with psoriasis. Thus, the present study collected and summarized the publications to date about this issue. METHODS: We conducted a systematic literature search through the PubMed, Embase, and Cochrane databases to identify all reports on potential drug- and vaccine-related PsA events until 28 February 2023. RESULTS: In total, 179 cases from 79 studies were eligible for study. Drugs commonly reported include coronavirus disease 2019 (COVID-19) mRNA vaccines (6 cases), bacillus Calmette-Guerin (BCG) vaccine (3 cases), interferon (18 cases), immune-checkpoint inhibitors (ICI) (19 cases), and biologic disease-modifying antirheumatic drugs (bDMARDs) (127 cases). Drugs causing psoriasis may also induce or aggravate PsA (6 cases). BDMARD-related PsA mostly occurred in a "paradoxical" setting, in which the bDMARDs approved for the treatment of psoriasis induce or aggravate PsA. The reported latency may be delayed up to 2 years. Peripheral arthritis (82.3%) was the most common manifestation of drug- and vaccine-related PsA, followed by dactylitis (29.1%), enthesitis (23.4%), and spondyloarthritis (17.7%). CONCLUSIONS: Drugs and vaccines may be implicated in the aggravation of PsA. Possible mechanisms include cytokine imbalance, immune dysregulation, or inadequate PsA treatment response compared with psoriasis. Most reports are case based without controls, so more studies are needed to further prove the causality. However, early recognition of factors causing or aggravating PsA is important to prevent the irreversible joint damage.
RESUMO
Gastric cancer significantly contributes to global cancer mortality, often leading to inoperable stages and high recurrence rates post-surgery. Elevated levels of G-17 and G-gly have been identified as potential risk factors, particularly in patients with duodenal ulcers. This study introduces an innovative D-shaped grinding long-period fiber grating sensor (D-LLPFGs) designed for non-invasive detection of the gastrin G-17 antigen, employing a layer-by-layer chemical self-assembly to bond G-17 antibodies onto the fiber surface through hydrogen bonding. The D-LLPFGs sensor demonstrated significant spectral shifts within 1 min of antigen-antibody interaction, highlighting its rapid detection capability. At an optimized antibody concentration of 4 µg/ml, antigen testing across different concentrations (10, 12.5, 20, 50 µg/ml) showed peak changes at 12.5 µg/ml antigen, with a 1.186 nm shift and 0.503 dB loss. The sensor exhibited a wavelength sensitivity of 0.095 nm/µg/ml, indicating its high sensitivity and potential in gastric cancer classification, diagnosis, and treatment. This research concludes that the D-shaped fiber sensor is an effective and sensitive tool for detecting G-17 antigen levels, presenting a significant advancement in non-invasive gastric cancer diagnosis. Its quick response time and high sensitivity highlight its potential for broad biomedical applications, offering a new avenue for early cancer detection and improving patient prognosis. The success of this study opens the door to further exploration and implementation of fiber optic sensors in clinical settings, marking a significant step forward in the fight against gastric cancer.
Assuntos
Biomarcadores Tumorais , Gastrinas , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico , Humanos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Gastrinas/sangue , Fibras Ópticas , Técnicas BiossensoriaisRESUMO
Large cohort studies have disclosed the association between obesity and rheumatoid arthritis (RA) risk. The sarcopenia prevalence in RA patients can be up to 31%. However, there is little information linking adipokines to sarcopenia in RA, so this study aimed to investigate whether adipokines were indeed involved in secondary sarcopenia in RA with a focus on non-obese females. Sixty-four female patients and 36 controls were included in this study. The serum adipokine levels (leptin and adiponectin) were determined by ELISA kits. The impacts of adipokines on muscle atrophy and potential autophagy were examined in mouse myoblasts, C2C12, upon treatment with recombinant leptin and adiponectin agonist (AdipoRan). Interestingly, serum adiponectin was significantly increased but the ratio of leptin/adiponectin was dramatically decreased in the RA patients with sarcopenia. After normalization by body mass, serum leptin was positively associated but adiponectin was negatively associated with muscle mass respectively, even after adjustment for fat mass. Treating C2C12 cells with leptin and AdipoRan inhibited proliferation of mature myotube respectively, as did treatment with the serum from RA patients. A combination of low leptin and high AdipoRan greatly decreased myogenin, but instead increased MAFbx and MuRF-1 as well as increased Beclin 1, Atg5, and LC3ß. Taken together, our study reveals that secondary sarcopenia of RA females may be an imbalance of RA-related, but not obesity-related, increase in adipokine production; additionally, the reduced leptin/adiponectin ratio could be a better indicator in monitoring sarcopenia in non-obese RA females. Moreover, adipokine imbalance may promote muscle atrophy through inducing autophagy.
Assuntos
Adiponectina , Artrite Reumatoide , Autofagia , Leptina , Sarcopenia , Humanos , Feminino , Artrite Reumatoide/sangue , Artrite Reumatoide/complicações , Sarcopenia/sangue , Sarcopenia/patologia , Pessoa de Meia-Idade , Adiponectina/sangue , Leptina/sangue , Animais , Camundongos , Adipocinas/sangue , Idoso , Linhagem Celular , Estudos de Casos e ControlesRESUMO
Chronic obstructive pulmonary disease (COPD) is the world's leading lung disease and lacks effective and specific clinical strategies. Probiotics are increasingly used to support the improvement of the course of inflammatory diseases. In this study, we evaluated the potential of a lactic acid bacteria (LAB) combination containing Limosilactobacillus reuteri GMNL-89 and Lacticaseibacillus paracasei GMNL-133 to decrease lung inflammation and emphysema in a COPD mouse model. This model was induced by intranasal stimulation with elastase and LPS for 4 weeks, followed by 2 weeks of oral LAB administration. The results showed that the LAB combination decreased lung emphysema and reduced inflammatory cytokines (IL-1ß, IL-6, TNF-α) in the lung tissue of COPD mice. Microbiome analysis revealed that Bifidobacterium and Akkermansia muciniphila, reduced in the gut of COPD mice, could be restored after LAB treatment. Microbial α-diversity in the lungs decreased in COPD mice but was reversed after LAB administration, which also increased the relative abundance of Candidatus arthromitus in the gut and decreased Burkholderia in the lungs. Furthermore, LAB-treated COPD mice exhibited increased levels of short-chain fatty acids, specifically acetic acid and propionic acid, in the cecum. Additionally, pulmonary emphysema and inflammation negatively correlated with C. arthromitus and Adlercreutzia levels. In conclusion, the combination of L. reuteri GMNL-89 and L. paracasei GMNL-133 demonstrates beneficial effects on pulmonary emphysema and inflammation in experimental COPD mice, correlating with changes in gut and lung microbiota, and providing a potential strategy for future adjuvant therapy.
RESUMO
Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with metabolic disturbances representing aberrant liver function and increased uric acid (UA) levels. Growing evidences have suggested a close relationship between metabolic disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized clinical trial was therefore conducted to explore the impacts of daily supplements with various combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and UA were recruited and randomly allocated into six groups. Eighty-two participants successfully completed the 60-day intervention without any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis revealed the intervention led to an increase in the population of commensal bacteria and a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study indicated the probiotic treatments reduced lipid accumulation and inflammatory factor expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supplementation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve liver function and UA management and may have good potential in treating asymptomatic MAFLD. Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.gov) with the number NCT06183801 on December 28, 2023.
Assuntos
Lactobacillus plantarum , Limosilactobacillus fermentum , Limosilactobacillus reuteri , Probióticos , Ácido Úrico , Humanos , Probióticos/administração & dosagem , Lactobacillus plantarum/fisiologia , Masculino , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Feminino , Projetos Piloto , Pessoa de Meia-Idade , Método Duplo-Cego , Fígado/metabolismo , Adulto , Microbioma Gastrointestinal/efeitos dos fármacos , Células Hep G2 , Células CACO-2 , Aspartato Aminotransferases/sangue , Fezes/microbiologia , Alanina Transaminase/sangueRESUMO
We conducted a 12-week randomized double-blind placebo-controlled clinical trial to investigate the potential impact of Bifidobacterium bifidum (Bf-688) supplementation on attention-deficit/hyperactivity disorder (ADHD). Children with ADHD who were already receiving a stable dose of methylphenidate (MPH) treatment were enrolled and were randomly assigned to two groups: one receiving add-on Bf-688 (daily bacterial count of 5 × 109 CFUs) (n = 51) and the other receiving a placebo (n = 51). All participants underwent assessments using Conners' Continuous Performance Test (CPT) and Conners' Continuous Auditory Test of Attention (CATA). Additionally, fecal samples were collected at the beginning of the trial (week 0) and at the endpoint (week 12). Remarkably, the group receiving Bf-688 supplementation, but not the placebo group, exhibited significant improvements in omission errors in CPT as well as Hit reaction time in both CPT and CATA. Gut microbiome analysis revealed a significant increase in the Firmicutes to Bacteroidetes ratio (F/B ratio) only in the Bf-688 group. Furthermore, we identified significant negative correlations between N-Glycan biosynthesis and Hit reaction time in both CPT and CATA. Our results demonstrate that the probiotic Bf-688 supplement can enhance neuropsychological performance in children with ADHD, possibly by altering the composition of the gut microbiota, ultimately leading to reduced N-Glycan biosynthesis.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Bifidobacterium bifidum , Suplementos Nutricionais , Fezes , Microbioma Gastrointestinal , Probióticos , Humanos , Método Duplo-Cego , Masculino , Probióticos/administração & dosagem , Feminino , Criança , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Metilfenidato/administração & dosagem , Resultado do Tratamento , Atenção/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacosRESUMO
OBJECTIVES: Predicting progression of nontuberculous mycobacterial lung disease (NTM-LD) remains challenging. This study evaluated whether sputum bacterial microbiome diversity can be the biomarker and provide novel insights into related phenotypes and treatment timing. METHODS: We analyzed 126 sputum microbiomes of 126 patients with newly diagnosed NTM-LD due to Mycobacterium avium complex, M. abscessus complex, and M. kansasii between May 2020 and December 2021. Patients were followed for 2 years to determine their disease progression status. We identified consistently representative genera that differentiated the progressor and nonprogressor by using six methodologies. These genera were used to construct a prediction model using random forest with 5-fold cross validation. RESULTS: Disease progression occurred in 49 (38.6%) patients. Compared with nonprogressors, α-diversity was lower in the progressors. Significant compositional differences existed in the ß-diversity between groups (p=0.001). The prediction model for NTM-LD progression constructed using seven genera (Burkholderia, Pseudomonas, Sphingomonas, Candidatus Saccharibacteria, Phocaeicola, Pelomonas, and Phascolarctobacterium) with significantly differential abundance achieved an area under curve of 0.871. CONCLUSIONS: Identification of the composition of sputum bacterial microbiome facilitates prediction of the course of NTM-LD, and maybe used to develop precision treatment involving modulating the respiratory microbiome composition to ameliorate NTM-LD.
RESUMO
The effects of gut microbiota on the association between carbohydrate intake during pregnancy and neonatal low birth weight (LBW) were investigated. A prospective cohort study was conducted with 257 singleton-born mother-child pairs in Taiwan, and maternal dietary intake was estimated using a questionnaire, with each macronutrient being classified as low, medium, or high. Maternal fecal samples were collected between 24 and 28 weeks of gestation, and gut microbiota composition and diversity were profiled using 16S rRNA amplicon gene sequencing. Carbohydrates were the major source of total energy (56.61%), followed by fat (27.92%) and protein (15.46%). The rate of infant LBW was 7.8%, which was positively correlated with maternal carbohydrate intake. In the pregnancy gut microbiota, Bacteroides ovatus and Dorea spp. were indirectly and directly negatively associated with fetal growth, respectively; Rosenburia faecis was directly positively associated with neonatal birth weight. Maternal hypertension during pregnancy altered the microbiota features and was associated with poor fetal growth. Microbiota-accessible carbohydrates can modify the composition and function of the pregnancy gut microbiota, thus providing a potential marker to modulate deviations from dietary patterns, particularly in women at risk of hypertension during pregnancy, to prevent neonatal LBW.