RESUMO
ConspectusChirality is ubiquitous in the universe and in living creatures over detectable length scales from the subatomic to the galactic, as exemplified in the two extremes by subatomic particles (neutrinos) and spiral galaxies. Between them are living creatures that display multiple levels of chirality emerging from hierarchically assembled asymmetric building blocks. Not too far from the bottom of this pyramid are the foundational building blocks with chiral atomic centers on sp3 carbon atoms exemplified by l-amino acids and d-sugars that are self-assembled into higher-order structures with increasing dimensions forming highly complex, amazingly functional, and energy-efficient living systems. The organization and materials employed in their construction inspired scientists to replicate complex living systems via the self-assembly of chiral components. Multiple studies pointed to unexpected and unique electromagnetic properties of chiral structures with nanoscale and microscale dimensions, including giant circular dichroism and collective circularly polarized scattering that their constituent units did not possess.To address the wide variety of chiral geometries observed in continuous materials, singular particles, and their complex systems, multiple analytic techniques are needed. Simultaneously, their spectroscopic properties create a pathway to multiple applications. For example, mirror-asymmetric vibrations at chiral centers formed by sp3 carbon atoms lead to optical activity for the infrared (IR) wavelength regions. At the same time, understanding the optical activity in, for example, the IR region enables biomedical applications because multiple modalities of biomedical imaging and vibrational optical activity (VOA) of biomolecules are known for IR range. In turn, VOA can be realized in both absorption and emission modalities due to large magnetic transition moments, as vibrational circular dichroism (VCD) or Raman optical activity (ROA) spectroscopy. In addition to the VOA, in the range of longer wavelengths, lattice vibrational mode or phononic behavior occurs in chiral crystals and nanoassemblies, which can be readily detected by terahertz circular dichroism (TCD) spectroscopy. Meanwhile, chiral self-assembly can induce circularly polarized light emission (CPLE) regardless of the existence of chirality in coassembled fluorophores. The CPLE from self-assembled chiral materials is particularly interesting because the CPLE can originate from both circularly polarized luminescence and circularly polarized scattering (CPS). Furthermore, because self-assembled nanostructures often exhibit stronger optical activity than their building blocks owing to dimension and resonance effects, the optical activity of single assembled nanostructures can be investigated by using microscopic technology combined with chiral optics. Here, we describe the state of the art for spectroscopic methods for the comprehensive analysis of chiral nanomaterials at various photon wavelengths, addressed with special attention given to new tools emerging both for materials with self-organized hierarchical chirality and single-particle spectroscopy.
RESUMO
Photon-to-matter chirality transfer offers both simplicity and universality to chiral synthesis, but its efficiency is typically low for organic compounds. Besides the fundamental importance of this process relevant for understanding the origin of homochirality on Earth, new pathways for imposing chiral bias during chemical process are essential for a variety of technologies from medicine to informatics. The strong optical activity of inorganic nanoparticles (NPs) affords photosynthetic routes to chiral superstructures using circularly polarized photons. Although plasmonic NPs are promising candidates for such synthetic routes due to the strong rotatory power of highly delocalized plasmonic states (Ma et al. Chem. Rev. 2017, 117 (12), 8041), realization of light-driven synthesis of chiral nanostructures has been more challenging for plasmonic NPs than for the semiconductor due to the short lifetime of the plasmonic states. Here we show that illumination of gold salt solutions with circularly polarized light induces the formation of NPs and their subsequent assembly into chiral nanostructures 10-15 nm in diameter. Despite their seemingly irregular shape, the resulting nanocolloids showed circular dichroism (CD) spectra with opposite polarity after exposure to photons with left and right circular polarization. The sign and spectral position of the CD peaks of illuminated dispersions matched those calculated for nanostructures with complex geometry identified from electron tomography images. Quantification of the complex shapes of NP assemblies using chirality measures revealed a direct correlation with the experimental spectra. The light-driven assembly of chiral nanostructures originates from the asymmetric displacement of NPs in dynamic assemblies by plasmonic fields followed by particle-to-particle attachment. The ability of gold NPs to "lock" the chirality of the incident photons in assembled nanostructures can be used to create a variety of chiral nanomaterials with plasmonic resonances.
RESUMO
Interconnectivity of components in three-dimensional networks (3DNs) is essential for stress transfer in hydrogels, aerogels, and composites. Entanglement of nanoscale components in the network relies on weak short-range intermolecular interactions. The intrinsic stiffness and rod-like geometry of nanoscale components limit the cohesive energy of the physical crosslinks in 3DN materials. Nature realizes networked gels differently using components with extensive branching. Branched aramid nanofibers (BANFs) mimicking polymeric components of biological gels were synthesized to produce 3DNs with high efficiency stress transfer. Individual BANFs are flexible, with the number of branches controlled by base strength in the hydrolysis process. The extensive connectivity of the BANFs allows them to form hydro- and aerogel monoliths with an order of magnitude less solid content than rod-like nanocomponents. Branching of nanofibers also leads to improved mechanics of gels and nanocomposites.
Assuntos
Nanofibras/química , Polímeros/química , Celulose/química , Géis/química , Ligação de Hidrogênio , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Resistência ao Cisalhamento , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The high optical and chemical activity of nanoparticles (NPs) signifies the possibility of converting the spin angular momenta of photons into structural changes in matter. Here, we demonstrate that illumination of dispersions of racemic CdTe NPs with right- (left-)handed circularly polarized light (CPL) induces the formation of right- (left-)handed twisted nanoribbons with an enantiomeric excess exceeding 30%, which is â¼10 times higher than that of typical CPL-induced reactions. Linearly polarized light or dark conditions led instead to straight nanoribbons. CPL 'templating' of NP assemblies is based on the enantio-selective photoactivation of chiral NPs and clusters, followed by their photooxidation and self-assembly into nanoribbons with specific helicity as a result of chirality-sensitive interactions between the NPs. The ability of NPs to retain the polarization information of incident photons should open pathways for the synthesis of chiral photonic materials and allow a better understanding of the origins of biomolecular homochirality.
Assuntos
Nanoestruturas/química , Processos Fotoquímicos , Fótons , EstereoisomerismoRESUMO
Three-dimensional optical nanostructures have garnered significant interest in photonics due to their extraordinary capabilities to manipulate the amplitude, phase, and polarization states of light. However, achieving complex three-dimensional optical nanostructures with bottom-up fabrication has remained challenging, despite its nanoscale precision and cost-effectiveness, mainly due to inherent limitations in structural controllability. Here, we report the optical characteristics of intricate two- and three-dimensional nanoarchitectures made of colloidal quantum dots fabricated with multi-dimensional transfer printing. Our customizable fabrication platform, directed by tailored interface polarity, enables flexible geometric control over a variety of one-, two-, and three-dimensional quantum dot architectures, achieving tunable and advanced optical features. For example, we demonstrate a two-dimensional quantum dot nanomesh with tuned subwavelength square perforations designed by finite-difference time-domain calculations, achieving an 8-fold enhanced photoluminescence due to the maximized optical resonance. Furthermore, a three-dimensional quantum dot chiral structure is also created via asymmetric stacking of one-dimensional quantum dot layers, realizing a pronounced circular dichroism intensity exceeding 20°.
RESUMO
Recent advances in chiral nanomaterials interacting with circularly polarized (CP) light open new expectations for optoelectronics in various research fields such as quantum- and biology-related technology. To fully utilize the great potential of chiral optoelectronic devices, the development of chiral optoelectronic devices that function in the near-infrared (NIR) region is required. Herein, we demonstrate a NIR-absorbing, chiroptical, low-band-gap polymer semiconductor for high-performance NIR CP light phototransistors. A newly synthesized diketopyrrolopyrrole-based donor-acceptor-type chiral π-conjugated polymer with an asymmetric alkyl side chain exhibits strong chiroptical activity in a wavelength range of 700-1000 nm. We found that the attachment of an enantiomerically pure stereogenic alkyl substituent to the π-conjugated chromophore backbone led to strong chiroptical activity through symmetry breaking of the π-conjugation of the backbone in a molecular rotational motion while maintaining the coplanar backbone conformation for efficient charge transport. The NIR CP light-sensing phototransistors based on a chiral π-conjugated polymer photoactive single channel layer exhibit a high photoresponsivity of 26 A W-1 under NIR CP light irradiation at 920 nm, leading to excellent NIR CP light distinguishability. This study will provide a rationale and strategy for designing chiral π-conjugated polymers for high-performance NIR chiral optoelectronics.
RESUMO
Surface modification is one of the most important techniques in modern science and engineering. The facile introduction of a wide variety of desired properties onto virtually any material surface is an ultimate goal in surface chemistry. To achieve this goal, the incorporation of structurally diverse molecules onto any material surface is an essential capability for ideal surface modification. Here, we present a general strategy of surface modification, in which many diverse surfaces can be functionalized by immobilizing a wide variety of molecules. This strategy functionalizes surfaces by a one-step immersion of substrates in a one-pot mixture of a molecule and a catecholamine surface modification agent. This one-step procedure for surface modification represents a standard protocol to control interfacial properties.
RESUMO
Chirality, the property whereby an object or a system cannot be superimposed on its mirror image, prevails amongst nature over various scales. Especially in biology, numerous chiral building blocks and chiral-specific interactions are involved in many essential biological activities. Despite the prevalence of chirality in nature, it has been no longer than 70 years since the mechanisms of chiral-specific interactions drew scientific attention and began to be studied. Owing to the advent of chiral-sensitive equipment such as circular dichroism spectrometers or chiral liquid columns for chromatography, it has recently been possible to achieve a deeper understanding of the chiral-specific interactions and consequential impacts on the functionality and efficiency of nanomedicine. From this point of view, it is worthwhile to examine previously reported chiral biomaterials with their compositions and possible applications to achieve new paradigms of biomaterials. This review discusses chiral materials on various scales and their biological applications.
RESUMO
Biological systems consist of hierarchical protein structures, each of which has unique 3D geometries optimized for specific functions. In the past decades, the growth of inorganic materials on specific proteins has attracted considerable attention. However, the use of specific proteins as templates has only been demonstrated in relatively simple organisms, such as viruses, limiting the range of structures that can be used as scaffolds. This study proposes a method for synthesizing metallic structures that resemble the 3D assemblies of specific proteins in mammalian cells and animal tissues. Using 1.4 nm nanogold-conjugated antibodies, specific proteins within cells and ex vivo tissues are labeled, and then the nanogold acts as nucleation sites for growth of metal particles. As proof of concept, various metal particles are grown using microtubules in cells as templates. The metal-containing cells are applied as catalysts and show catalytic stability in liquid-phase reactions due to the rigid support provided by the microtubules. Finally, this method is used to produce metal structures that replicate the specific protein assemblies of neurons in the mouse brain or the extracellular matrices in the mouse kidney and heart. This new biotemplating approach can facilitate the conversion of specific protein structures into metallic forms in ex vivo multicellular organisms.
Assuntos
Mamíferos , Metais , Animais , Catálise , Metais/química , CamundongosRESUMO
Research on chiral nanomaterials (NMs) has grown radically with a rapid increase in the number of publications over the past decade. It has attracted a large number of scientists in various fields predominantly because of the emergence of unprecedented electric, optical, and magnetic properties when chirality arises in NMs. For applications, it is particularly informative and fascinating to investigate how chiral NMs interact with electromagnetic waves and magnetic fields, depending on their intrinsic composition properties, atomic distortions, and assembled structures. This review provides an overview of recent advances in chiral NMs, such as semiconducting, metallic, and magnetic nanostructures.
RESUMO
Chiral nanomaterials provide a rich platform for versatile applications. Tuning the wavelength of polarization rotation maxima in the broad range including short-wave infrared (SWIR) is a promising candidate for infrared neural stimulation, imaging, and nanothermometry. However, the majority of previously developed chiral nanomaterials reveal the optical activity in a relatively shorter wavelength range (ultraviolet-visible, UV-vis), not in SWIR. Here, we demonstrate a versatile method to synthesize chiral copper sulfides using cysteine, as the stabilizer, and transferring the chirality from molecular- to the microscale through self-assembly. The assembled structures show broad chiroptical activity in the UV-vis-NIR-SWIR region (200-2500 nm). Importantly, we can tune the chiroptical activity by simply changing the reaction conditions. This approach can be extended to materials platforms for developing next-generation optical devices, metamaterials, telecommunications, and asymmetric catalysts.
RESUMO
Chirality is ubiquitous in nature and hard-wired into every biological system. Despite the prevalence of chirality in biological systems, controlling biomaterial chirality to influence interactions with cells has only recently been explored. Chiral-engineered supraparticles (SPs) that interact differentially with cells and proteins depending on their handedness are presented. SPs coordinated with d-chirality demonstrate greater than threefold enhanced cell membrane penetration in breast, cervical, and multiple myeloma cancer cells. Quartz crystal microbalance with dissipation and isothermal titration calorimetry measurements reveal the mechanism of these chiral-specific interactions. Thermodynamically, d-SPs show more stable adhesion to lipid layers composed of phospholipids and cholesterol compared to l-SPs. In vivo, d-SPs exhibit superior stability and longer biological half-lives likely due to opposite chirality and thus protection from endogenous proteins including proteases. This work shows that incorporating d-chirality into nanosystems enhances uptake by cancer cells and prolonged in vivo stability in circulation, providing support for the importance of chirality in biomaterials. Thus, chiral nanosystems may have the potential to provide a new level of control for drug delivery systems, tumor detection markers, biosensors, and other biomaterial-based devices.
Assuntos
Materiais Biocompatíveis/química , Nanomedicina , Materiais Biocompatíveis/farmacologia , Técnicas Biossensoriais/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Meia-Vida , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Microscopia Confocal , Polietilenoglicóis/química , Técnicas de Microbalança de Cristal de Quartzo , Estereoisomerismo , TermodinâmicaRESUMO
Accurate medical recordkeeping is a major challenge in many low-resource settings where well-maintained centralized databases do not exist, contributing to 1.5 million vaccine-preventable deaths annually. Here, we present an approach to encode medical history on a patient using the spatial distribution of biocompatible, near-infrared quantum dots (NIR QDs) in the dermis. QDs are invisible to the naked eye yet detectable when exposed to NIR light. QDs with a copper indium selenide core and aluminum-doped zinc sulfide shell were tuned to emit in the NIR spectrum by controlling stoichiometry and shelling time. The formulation showing the greatest resistance to photobleaching after simulated sunlight exposure (5-year equivalence) through pigmented human skin was encapsulated in microparticles for use in vivo. In parallel, microneedle geometry was optimized in silico and validated ex vivo using porcine and synthetic human skin. QD-containing microparticles were then embedded in dissolvable microneedles and administered to rats with or without a vaccine. Longitudinal in vivo imaging using a smartphone adapted to detect NIR light demonstrated that microneedle-delivered QD patterns remained bright and could be accurately identified using a machine learning algorithm 9 months after application. In addition, codelivery with inactivated poliovirus vaccine produced neutralizing antibody titers above the threshold considered protective. These findings suggest that intradermal QDs can be used to reliably encode information and can be delivered with a vaccine, which may be particularly valuable in the developing world and open up new avenues for decentralized data storage and biosensing.
Assuntos
Pontos Quânticos , Pele/metabolismo , Vacinação/métodos , Animais , Humanos , Ratos , Sulfetos/química , Suínos , Compostos de Zinco/químicaRESUMO
Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.
RESUMO
The resistance of bioceramics against non-specific adsorption of serum proteins is critical for a wide range of biomedical applications. Some polysaccharides serve as natural protein-resistant molecules in extracellular matrices; however, the stable adhesion of polysaccharides to ceramic biomaterials in an aqueous solution is very challenging because chemical linkages at organic/inorganic interfaces are susceptible to hydrolytic degradation. Here, a catechol-grafted dextran, which strongly binds to titania (TiO2 ) in an aqueous milieu to effectively suppress cell adhesion through anti-fouling activity against non-specific protein adsorption, is introduced. Catechol is conjugated approximately to 6.7 mol% of glucose units of dextran via a carbamate ester linkage, corresponding to roughly three catechols per dextran chain having an average molecular weight of 6 kDa. Multivalent interactions of catechols with a titanium atom, enabled by the graft-type structure, provide a very stable coating of dextran on this inorganic surface. The adhesion of HeLa cells on the dextran-coated titania surface is reduced by 2.4-fold compared to that on a pristine titania surface. These results suggest that the graft-type incorporation of a small number of catechol moieties along a dextran backbone is an effective means of producing a stable anti-fouling interface on inorganic biomaterials in an aqueous environment.